Petroleum Engineering

2016/2017

Degrees Offered

- Professional Masters in Petroleum Reservoir Systems
- Master of Engineering (Petroleum Engineering)
- Master of Science (Petroleum Engineering)
- Doctor of Philosophy (Petroleum Engineering)

Program Description

The Petroleum Engineering Department offers students a choice of a Master of Science (MS) degree or a Master of Engineering (ME) degree. For the MS degree, a thesis is required in addition to course work. For the ME degree, no thesis is required, but the course work requirement is greater than that for the MS degree. The Petroleum Engineering Department also offers Petroleum Engineering (PE) undergraduate students the option of a Combined Undergraduate/Graduate Program. This is an accelerated program that provides the opportunity to PE students to have a head start on their graduate education.

Applications from students having a MS in Petroleum Engineering, or in another complimentary discipline, will be considered for admission to the Doctor of Philosophy (Ph.D.) program. To obtain the Ph.D. degree, a student must demonstrate unusual competence, creativity, and dedication in the degree field. In addition to extensive course work, a dissertation is required for the Ph.D. degree.

Applying for Admission

All graduate applicants must have taken core engineering, math and science courses before applying to graduate school. For the Colorado School of Mines this would be 3 units of Calculus, 2 units of Chemistry with Quantitative Lab, 2 units of Physics, Differential Equations, Statics, Fluid Mechanics, Thermodynamics and Mechanics of Materials. To apply for admission, follow the procedure outlined in the general section of this bulletin. Three letters of recommendation must accompany the application. The Petroleum Engineering Department requires the general test of the Graduate Record Examination (GRE) for applicants to all degree levels.

Applicants for the Master of Science, Master of Engineering, and Professional Masters in Petroleum Reservoir Systems programs should have a minimum score of 155 or better and applicants for the Ph.D. program are expected to have 159 or better on the quantitative section of the GRE exam, in addition to acceptable scores in the verbal and analytical sections. The GPA of the applicant must be 3.0 or higher. The graduate application review committee determines minimum requirements accordingly, and these requirements may change depending on the application pool for the particular semester. The applicants whose native language is not English are also expected to provide satisfactory scores on the TOEFL (Test of English as a Foreign Language) exam as specified in the general section of this bulletin.

Required Curriculum

A student in the graduate program selects course work by consultation with the Faculty Advisor and with the approval of the graduate committee. Course work is tailored to the needs and interests of the student. Students who do not have a BS degree in petroleum engineering must take deficiency courses as required by the department as soon as possible in their graduate programs. Depending on the applicant’s undergraduate degree, various basic undergraduate petroleum engineering and geology courses will be required. These deficiency courses are not counted towards the graduate degree; nonetheless, the student is expected to pass the required courses and the grades received in these courses are included in the GPA. Not passing these courses can jeopardize the student’s continuance in the graduate program. It is desirable for students with deficiencies to complete the deficiencies or course work within the first two semesters of arrival to the program or as soon as possible with the approval of their advisor.

All PE graduate students are required to complete 3 credit hours of course work in writing, research, or presentation intensive classes, such as PEGN681, LICM501, SYGN501, and SYGN600, as agreed to by their graduate advisor.

Fields of Research

Current fields of research include:

- Rock and fluid properties, phase behavior, and rock mechanics
- Geomechanics
- Formation evaluation, well test analysis, and reservoir characterization
- Oil recovery processes
- IOR/EOR Methods
- Naturally fractured reservoirs
- Analytical and numerical modeling of fluid flow in porous media
- Pore-scale modeling and flow in nanopores
- Development of unconventional oil and gas plays
- Geothermal energy
- Gas Hydrates
- Completion and stimulation of wells
- Horizontal and multilateral wells
- Multi-stage fracturing of horizontal wells
- Drilling management and rig automation
- Fluid flow in wellbores and artificial lift
- Drilling mechanics, directional drilling,
- Extraterrestrial drilling
- Ice coring and drilling
- Bit vibration analysis, tubular buckling and stability, wave propagation in drilling tubulars
- Laser technology in penetrating rocks
- Environment, health, and safety in oil and gas industry

Research projects may involve professors and graduate students from other disciplines. Projects may include off-campus laboratories, institutes, and other resources.

The Petroleum Engineering Department houses a research institute, two research centers, and two consortia.

Research Institute

- Unconventional Natural Gas and Oil Institute (UNGI)

Research Centers

- Marathon Center of Excellence for Reservoir Studies (MCERS)
• Center for Earth Mechanics, Materials, and Characterization (CEMMC)

Research Consortia

• Fracturing, Acidizing, Stimulation Technology (FAST) Consortium.
• Unconventional Reservoir Engineering Project (UREP) Consortium.

Special Features

In the exchange programs with the Petroleum Engineering Departments of the Mining University of Leoben, Austria, Technical University in Delft, Holland, and the University of Adelaide, Australia, a student may spend one semester abroad during graduate studies and receive full transfer of credit back to CSM with prior approval of the Petroleum Engineering Department at CSM.

In the fall of 2012, the new Petroleum Engineering building, Marquez Hall, was opened. The new home for the Petroleum Engineering Department is a prominent campus landmark, showcasing Mines’ longstanding strengths in its core focus areas and our commitment to staying at the forefront of innovation. The new building is designed using aggressive energy saving strategies and LEED certified. Marquez Hall is the first building on the Colorado School of Mines Campus that is funded entirely by donations.

The Petroleum Engineering Department enjoys strong collaboration with the Geology and Geological Engineering Department and Geophysics Department at CSM. Courses that integrate the faculty and interests of the three departments are taught at the undergraduate and graduate levels.

The department is close to oil and gas field operations, oil companies and laboratories, and geologic outcrops of producing formations. There are many opportunities for summer and part-time employment in the oil and gas industry.

Each summer, several graduate students assist with the field sessions designed for undergraduate students. The field sessions in the past several years have included visits to oil and gas operations in Alaska, Canada, Southern California, the Gulf Coast, the Northeast US, the Rocky Mountain regions, and western Colorado.

The Petroleum Engineering Department encourages student involvement with the Society of Petroleum Engineers, the American Association of Drilling Engineers and the American Rock Mechanics Association. The department provides some financial support for students attending the annual technical conferences for these professional societies.

Program Requirements

Professional Masters in Petroleum Reservoir Systems

Minimum 36 hours of course credit

Master of Engineering

Minimum 36 hours of course credit

Master of Science

Minimum 36 hours of which no less than 12 credit hours earned by research and 24 credit hours by course work

Combined Undergraduate/Graduate Program

The same requirements as Master of Engineering or Master of Science after the student is granted full graduate status. Students in the Combined Undergraduate/Graduate Program may fulfill part of the requirements of their graduate degree by including up to 6 credit hours of undergraduate course credits upon approval of the department.

Doctor of Philosophy

Minimum 90 credit hours beyond the bachelor’s degree of which no less than 30 credit hours earned by research, or minimum 54 credit hours beyond the Master’s degree of which no less than 30 credit hours earned by research.

The Petroleum Engineering, Geology and Geological Engineering, and the Geophysics Departments share oversight for the Professional Masters in Petroleum Reservoir Systems program through a committee consisting of one faculty member from each department. Students gain admission to the program by application to any of the three sponsoring departments. Students are administered by that department into which they first matriculate. A minimum of 36 credit hours of course credit is required to complete the Professional Masters in Petroleum Reservoir Systems program. Up to 9 credits may be earned by 400 level courses. All other credits toward the degree must be 500 level or above. At least 9 hours must consist of:

- GEGN439 MULTIDISCIPLINARY PETROLEUM DESIGN 3.0
- or GPGN439 GEOPHYSICS PROJECT DESIGN / MULTIDISCIPLINARY PETROLEUM DESIGN 3.0
- or PEGN439 MULTIDISCIPLINARY PETROLEUM DESIGN 3.0

Select one of the following: 3.0
- GPGN/PEGNnull419 WELL LOG ANALYSIS AND FORMATION EVALUATION
- GPGN/PEGNnull519 ADVANCED FORMATION EVALUATION

Select one of the following: 3.0
- GEGN503 INTEGRATED EXPLORATION AND DEVELOPMENT
- or GPGN503 INTEGRATED EXPLORATION AND DEVELOPMENT
- or PEGN503 INTEGRATED EXPLORATION AND DEVELOPMENT
- GEGN504 INTEGRATED EXPLORATION AND DEVELOPMENT
- or GPGN504 INTEGRATED EXPLORATION AND DEVELOPMENT
- or PEGN504 INTEGRATED EXPLORATION AND DEVELOPMENT

Total Semester Hrs 9.0

Also 9 additional hours must consist of one course each from the 3 participating departments. The remaining 18 hours may consist of graduate courses from any of the 3 participating departments, or other courses approved by the committee. Up to 6 hours may consist of independent study, including an industry project.

Candidates for the non-thesis Master of Engineering degree must complete a minimum of 36 hours of graduate course credit. At least 18 of the credit hours must be from the Petroleum Engineering Department. Up to 12 graduate credit hours can be transferred from another institution,
and up to 9 credit hours of senior-level courses may be applied to the degree. All courses must be approved by the student's advisor and the department head. No graduate committee is required. No more than six credit hours can be earned through independent study.

Candidates for the Master of Science degree must complete at least 24 graduate credit hours of course work, approved by the candidate's graduate committee, and a minimum of 12 hours of research credit. At least 12 of the course credit must be from the Petroleum Engineering Department. Up to 9 credit hours may be transferred from another institution. Up to 9 credit hours of senior-level courses may be applied to the degree. For the MS degree, the student must demonstrate ability to observe, analyze, and report original scientific research. For other requirements, refer to the general instructions of the Graduate School (bulletin.mines.edu/graduate/thegraduateschool) in this bulletin.

The requirements for the Combined Undergraduate/Graduate Program are defined in the section of this Bulletin titled “Graduate Degrees and Requirements—V. Combined Undergraduate/Graduate Programs.” After the student is granted full graduate status, the requirements are the same as those for the non-thesis Master of Engineering or thesis-based Master of Science degree, depending to which program the student was accepted. The Combined Undergraduate/Graduate Program allows students to fulfill part of the requirements of their graduate degree by including up to 6 credit hours of their undergraduate course credits upon approval of the department. The student must apply for the program by submitting an application through the Graduate School before the first semester of their Senior year. For other requirements, refer to the general directions of the Graduate School (bulletin.mines.edu/graduate/thegraduateschool) in this bulletin.

A candidate for the Ph.D. must complete at least 60 hours of course credit and a minimum of 30 credit hours of research beyond the Bachelor's degree or at least 24 hours of course credit and a minimum of 30 credit hours of research beyond the Master's degree. The credit hours to be counted toward a Ph.D. are dependent upon approval of the student's thesis committee. Students who enter the Ph.D. program with a Bachelor's degree may transfer up to 33 graduate credit hours from another institution with the approval of the graduate advisor. Students who enter the Ph.D. program with a master's degree may transfer up to 45 credit hours of course and research work from another institution upon approval by the graduate advisor. Ph.D. students must complete a minimum of 12 credit hours of their required course credit in a minor program of study. The student's faculty advisor, thesis committee, and the department head must approve the course selection. Full-time Ph.D. students must satisfy the following requirements for admission to candidacy within the first two calendar years after enrolling in the program:

1. have a thesis committee appointment form on file,
2. complete all prerequisite courses successfully,
3. demonstrate adequate preparation for and satisfactory ability to conduct doctoral research by successfully completing a series of written and/or oral examinations and fulfilling the other requirements of their graduate committees as outlined in the department's graduate handbook.

Failure to fulfill these requirements within the time limits specified above may result in immediate mandatory dismissal from the Ph.D. program according to the procedure outlined in the section of this Bulletin titled “General Regulations—Unsatisfactory Academic Performance—Unsatisfactory Academic Progress Resulting in Probation or Discretionary Dismissal.” For other requirements, refer to the general directions of the Graduate School (bulletin.mines.edu/graduate/thegraduateschool) in this bulletin and/or the Department's Graduate Student Handbook.

### Professors
- Hazim Abass
- Ramona M. Graves, Dean, College of Earth Resource Sciences and Engineering
- Hossein Kazemi, Chesebro' Distinguished Chair
- Erdal Ozkan, Professor and Department Head, "Mick" Merelli/Cimarex Energy Distinguished Chair
- Azra N. Tutuncu, Harry D. Campbell Chair
- Yu-Shu Wu, CMG Chair

### Associate Professors
- Alfred W. Eustes III
- Jorge H. B. Sampaio Jr.
- Manika Prasad
- Xiaolong Yin

### Assistant Professors
- Rosmer Maria Brito
- Luis Zerpa

### Teaching Professor
- Linda A. Battalora

### Teaching Associate Professors
- Mansur Emilia
- Carrie J. McClelland
- Mark G. Miller

### Teaching Assistant Professor
- Elio S. Dean

### Research Associate Professor
- Philip H. Winterfeld

### Research Assistant Professor
- Wendy Wempe

### Adjunct Professor
- William W. Fleckenstein

### Professor Emeritus
- Craig W. Van Kirk

### Associate Professor Emeritus
- Richard Christiansen
Courses

PEGN501. APPLICATIONS OF NUMERICAL METHODS TO PETROLEUM ENGINEERING. 3.0 Semester Hrs.
The course will solve problems of interest in Petroleum Engineering through the use of spreadsheets on personal computers and structured FORTRAN programming on PCs or mainframes. Numerical techniques will include methods for numerical quadrature, differentiation, interpolation, solution of linear and nonlinear ordinary differential equations, curve fitting and direct or iterative methods for solving simultaneous equations. Prerequisites: PEGN414 and PEGN424. 3 hours lecture; 3 semester hours.

PEGN502. ADVANCED DRILLING FLUIDS. 3.0 Semester Hrs.
The physical properties and purpose of drilling fluids are investigated. Emphasis is placed on drilling fluid design, clay chemistry, testing, and solids control. Prerequisite: PEGN311. 2 hours lecture, 3 hours lab; 3 semester hours.

PEGN503. INTEGRATED EXPLORATION AND DEVELOPMENT. 3.0 Semester Hrs.
(I) Students work alone and in teams to study reservoirs from fluvial-deltaic and valley fill depositional environments. This is a multidisciplinary course that shows students how to characterize and model subsurface reservoir performance by integrating data, methods and concepts from geology, geophysics and petroleum engineering. Activities include field trips, computer modeling, written exercises and oral team presentations. Prerequisite: none. 2 hours lecture, 3 hours lab; 3 semester hours. Offered fall semester, odd years.

PEGN504. INTEGRATED EXPLORATION AND DEVELOPMENT. 3.0 Semester Hrs.
(I) Students work in multidisciplinary teams to study practical problems and case studies in integrated subsurface exploration and development. The course addresses emerging technologies and timely topics with a general focus on carbonate reservoirs. Activities include field trips, 3D computer modeling, written exercises and oral team presentations. Prerequisite: none. 3 hours lecture and seminar; 3 semester hours. Offered fall semester, even years.

PEGN505. HORIZONTAL WELLS: RESERVOIR AND PRODUCTION ASPECTS. 3.0 Semester Hrs.
This course covers the fundamental concepts of horizontal well reservoir and production engineering with special emphasis on the new developments. Each topic covered highlights the concepts that are generic to horizontal wells and draws attention to the pitfalls of applying conventional concepts to horizontal wells without critical evaluation. There is no set prerequisite for the course but basic knowledge on general reservoir engineering concepts is useful. 3 hours lecture; 3 semester hours.

PEGN506. ENHANCED OIL RECOVERY METHODS. 3.0 Semester Hrs.
Enhanced oil recovery (EOR) methods are reviewed from both the qualitative and quantitative standpoint. Recovery mechanisms and design procedures for the various EOR processes are discussed. In addition to lectures, problems on actual field design procedures will be covered. Field case histories will be reviewed. Prerequisite: PEGN424. 3 hours lecture; 3 semester hours.

PEGN507. INTEGRATED FIELD PROCESSING. 3.0 Semester Hrs.
Integrated design of production facilities covering multistage separation of oil, gas, and water, multiphase flow, oil skimmers, natural gas dehydration, compression, crude stabilization, petroleum fluid storage, and vapor recovery. Prerequisite: PEGN411. 3 hours lecture; 3 semester hours.

PEGN508. ADVANCED ROCK PROPERTIES. 3.0 Semester Hrs.
Application of rock mechanics and rock properties to reservoir engineering, well logging, well completion and well stimulation. Topics covered include: capillary pressure, relative permeability, velocity effects on Darcy’s Law, elastic/mechanical rock properties, subsidence, reservoir compaction, and sand control. Prerequisites: PEGN423 and PEGN426. 3 hours lecture; 3 semester hours.

PEGN511. ADVANCED THERMODYNAMICS AND PETROLEUM FLUIDS PHASE BEHAVIOR. 3.0 Semester Hrs.
Essentials of thermodynamics for understanding the phase behavior of petroleum fluids such as natural gas and oil. Modeling of phase behavior of single and multi-component systems with equations of states with a brief introduction to PVT laboratory studies, commercial PVT software, asphaltenes, gas hydrates, mineral deposition, and statistical thermodynamics. Prerequisites: PEGN310 and PEGN305 or equivalent. 3 hours lecture; 3 semester hours.

PEGN512. ADVANCED GAS ENGINEERING. 3.0 Semester Hrs.
The physical properties and phase behavior of gas and gas condensates will be discussed. Flow through tubing and pipelines as well as through porous media is covered. Reserve calculations for normally pressured, abnormally pressured and water drive reservoirs are presented. Both stabilized and isochronal deliverability testing of gas wells will be illustrated. Prerequisite: PEGN423. 3 hours lecture; 3 semester hours.

PEGN513. RESERVOIR SIMULATION I. 3.0 Semester Hrs.
The course provides the rudiments of reservoir simulation, which include flow equations, solution methods, and data requirement. Specifically, the course covers: equations of conservation of mass, conservation of momentum, and energy balance; numerical solution of flow in petroleum reservoirs by finite difference (FD) and control volume FD; permeability tensor and directional permeability; non-Darcy flow; convective flow and numerical dispersion; grid orientation problems; introduction to finite element and mixed finite-element methods; introduction to hybrid analytical/numerical solutions; introduction to multi-phase flow models; relative permeability, capillary pressure and wettability issues; linear equation solvers; streamline simulation; and multi-scale simulation concept. Prerequisite: PEGN424 or equivalent, strong reservoir engineering background, and basic computer programming knowledge. 3 credit hours. 3 hours of lecture per week.

PEGN514. PETROLEUM TESTING TECHNIQUES. 3.0 Semester Hrs.
Investigation of basic physical properties of petroleum reservoir rocks and fluids. Review of recommended practices for testing drilling fluids and oil well cements. Emphasis is placed on the accuracy and calibration of test equipment. Quality report writing is stressed. Prerequisite: Graduate status. 2 hours lecture, 1 hour lab; 3 semester hours. Required for students who do not have a BS in PE.

PEGN515. RESERVOIR ENGINEERING PRINCIPLES. 3.0 Semester Hrs.
Reservoir Engineering overview. Predicting hydrocarbon in place; volumetric method, deterministic and probabilistic approaches, material balance, water influx, graphical techniques. Fluid flow in porous media; continuity and diffusivity equations. Well performance; productivity index for vertical, perforated, fractured, restricted, slanted, and horizontal wells, inflow performance relationship under multiphase flow conditions. Combining material balance and well performance equations. Future reservoir performance prediction; Muskat, Taron, Carter and Tracy methods. Fetkovich decline curves. Reservoir simulation; fundamentals and formulation, streamline simulation, integrated reservoir studies. 3 hours lecture, 3 semester hours.
PEGN516. PRODUCTION ENGINEERING PRINCIPLES. 3.0 Semester Hrs.
Production Engineering Overview. Course provides a broad introduction
to the practice of production engineering. Covers petroleum system
analysis, well stimulation (fracturing and acidizing), artificial lift (gas lift,
sucker rod, ESP, and others), and surface facilities. 3 hours lecture, 3
semester hours.

PEGN517. DRILLING ENGINEERING PRINCIPLES. 3.0 Semester Hrs.
Drilling Engineering overview. Subjects to be covered include overall
drilling organization, contracting, and reporting; basic drilling engineering
principles and equipment; drilling fluids, hydraulics, and cuttings
transport; drillstring design; drill bits; drilling optimization; fishing
operations; well control; pore pressure and fracture gradients, casing
points and design; cementing; directional drilling and horizontal drilling. 3
hours lecture, 3 semester hours.

PEGN519. ADVANCED FORMATION EVALUATION. 3.0 Semester Hrs.
A detailed review of wireline well logging and evaluation methods
stressing the capability of the measurements to determine normal and
special reservoir rock parameters related to reservoir and production
problems. Computers for log processing of single and multiple wells.
Utilization of well logs and geology in evaluating well performance before,
during, and after production of hydrocarbons. The sensitivity of formation
evaluation parameters in the volumetric determination of petroleum in
reservoirs. Prerequisite: PEGN419. 3 hours lecture; 3 semester hours.

PEGN522. ADVANCED WELL STIMULATION. 3.0 Semester Hrs.
Basic applications of rock mechanics to petroleum engineering problems.
Hydraulic fracturing; acid fracturing, fracturing simulators; fracturing
diagnostics; sandstone acidizing; sand control, and well bore stability.
Different theories of formation failure, measurement of mechanical
properties. Review of recent advances and research areas. Prerequisite:
PEGN426. 3 hours lecture; 3 semester hours.

PEGN523. ADVANCED ECONOMIC ANALYSIS OF OIL AND GAS
PROJECTS. 3.0 Semester Hrs.
Determination of present value of oil properties. Determination of
severance, ad valorem, windfall profit, and federal income taxes.
Analysis of profitability indicators. Application of decision tree theory and
Monte Carlo methods to oil and gas properties. Economic criteria for
equipment selection. Prerequisite: PEGN422 or EBGN504 or ChEN504
or MNGN427 or ChEN421. 3 hours lecture; 3 semester hours.

PEGN524. PETROLEUM ECONOMICS AND MANAGEMENT. 3.0
Semester Hrs.
Business applications in the petroleum industry are the central focus.
Topics covered are: fundamentals of accounting, oil and gas accounting,
strategic planning, oil and gas taxation, oil field deals, negotiations, and
the formation of secondary units. The concepts are covered by forming
companies that prepare proforma financial statements, make deals, drill
for oil and gas, keep accounting records, and negotiate the participation
formula for a secondary unit. Prerequisite: PEGN422. 3 hours lecture; 3
semester hours.

PEGN530. ENVIRONMENTAL, ENERGY, AND NATURAL
RESOURCES LAW. 3.0 Semester Hrs.
Equivalent with ESGN502,
(II) Covered topics: a survey of United States (US) environmental law
including the National Environmental Protection Act (NEPA), Resource
Conservation and Recovery Act (RCRA), Clean Air Act (CAA), Clean
Water Act (CWA), Safe Drinking Water Act (SDWA), Comprehensive
Environmental Response Compensation and Liability Act (CERCLA),
Toxic Substances Control Act (TSCA), and Oil Pollution Act (OPA); and
US law and regulation of public lands, endangered species, timber,
water, minerals, coal, oil, natural gas, nuclear power, hydroelectric power,
and alternative energy resources. 3 hours lecture; 3 semester hours.

PEGN541. APPLIED RESERVOIR SIMULATION. 3.0 Semester Hrs.
Concepts of reservoir simulation within the context of reservoir
management will be discussed. Course participants will learn how to use
available flow simulators to achieve reservoir management objectives.
They will apply the concepts to an open-ended engineering design
problem. Prerequisites: PEGN424. 3 hours lecture; 3 semester hours.

PEGN542. INTEGRATED RESERVOIR CHARACTERIZATION. 3.0
Semester Hrs.
The course introduces integrated reservoir characterization from a
petroleum engineering perspective. Reservoir characterization helps
quantify properties that influence flow characteristics. Students will learn
to assess and integrate data sources into a comprehensive reservoir
model. Prerequisites: PEGN424. 3 hours lecture; 3 semester hours.

PEGN550. MODERN RESERVOIR SIMULATORS. 3.0 Semester Hrs.
Students will learn to run reservoir simulation software using a variety of
reservoir engineering examples. The course will focus on the capabilities
and operational features of simulators. Students will learn to use pre-
and post-processors, fluid property analysis software, black oil and gas
reservoir models, and compositional models. 3 hours lecture; 3 semester
hours.

PEGN577. WORKOVER DESIGN AND PRACTICE. 3.0 Semester Hrs.
Workover Engineering overview. Subjects to be covered include
Workover Economics, Completion Types, Workover Design
Considerations, Wellbore Cleanout (Fishing), Workover Well Control,
Tubing and Workstring Design, Slickline Operations, Coiled Tubing
Operations, Packer Selection, Remedial Cementing Design and
Execution, Completion Fluids, Gravel Packing, and Acidizing. 3 hours
lecture, 3 semester hours.
PEGN590. RESERVOIR GEOMECHANICS. 3.0 Semester Hrs.
The course provides an introduction to fundamental rock mechanics concepts and aims to emphasize their role in exploration, drilling, completion and production engineering operations. Basic stress and strain concepts, pore pressure, fracture gradient and in situ stress magnitude and orientation determination and how these properties are obtained from the field measurements, mechanisms of deformation in rock, integrated wellbore stability analysis, depletion induced compaction and associated changes in rock properties and formation strength, hydraulic fracturing and fracture stability are among the topics to be covered in this course. Naturally fractured formation properties and how they impact the characteristics measured in the laboratory and in field are also included in the curriculum. Several industry speakers are invited as part of the lecture series to bring practical aspects of the fundamentals of geomechanics covered in the classroom. In addition, Petrel, FLAC3D and FRACMAN software practices with associated assignments are offered to integrate field data on problems including in situ stress magnitude and orientations, pore pressure and fracture gradient prediction and rock property determination using laboratory core measurements, logs, seismic, geological data. Problems are assign for students to use the field and laboratory data to obtain static and dynamic moduli, rock failure criteria, wellbore stress concentration and failure, production induced compaction/subsidence and hydraulic fracture mechanics.

PEGN591. SHALE RESERVOIR ENGINEERING. 3.0 Semester Hrs.
Equivalent with PEGN615.
Fundamentals of shale-reservoir engineering and special topics of production from shale reservoirs are covered. The question of what makes shale a producing reservoir is explored. An unconventional understanding of shale-reservoir characterization is emphasized and the pitfalls of conventional measurements and interpretations are discussed. Geological, geomechanical, and engineering aspects of shale reservoirs are explained. Well completions with emphasis on hydraulic fracturing and fractured horizontal wells are discussed from the viewpoint of reservoir engineering. Darcy flow, diffusive flow, and desorption in shale matrix are covered. Contributions of hydraulic and natural fractures are discussed and the stimulated reservoir volume concept is introduced. Interactions of flow between fractures and matrix are explained within the context of dual-porosity modeling. Applications of pressure-transient, rate-transient, decline-curve and transient-productivity analyses are covered. Field examples are studied. 3 hours lecture; 3 semester hours.

PEGN592. GEOMECHANICS FOR UNCONVENTIONAL RESOURCES. 3.0 Semester Hrs.
A wide spectrum of topics related to the challenges and solutions for the exploration, drilling, completion, production and hydraulic fracturing of unconventional resources including gas and oil shale, heavy oil sand and carbonate reservoirs, their seal formations is explored. The students acquire skills in integrating and visualizing multidiscipline data in Petrel (a short tutorial is offered) as well as assignments regarding case studies using field and core datasets. The role of integrating geomechanics data in execution of the exploration, drilling, completion, production, hydraulic fracturing and monitoring of pilots as well as commercial applications in unlocking the unconventional resources are pointed out using examples. Prerequisite: PEGN590. 3 hours lecture; 3 semester hours.

PEGN593. ADVANCED WELL INTEGRITY. 3.0 Semester Hrs.
Fundamentals of wellbore stability, sand production, how to keep wellbore intact is covered in this course. The stress alterations in near wellbore region and associated consequences in the form of well failures will be covered in detailed theoretically and with examples from deepwater conventional wells and onshore unconventional well operations. Assignments will be given to expose the students to the real field data to interpret and evaluate cases to determine practical solutions to drilling and production related challenges. Fluid pressure and composition sensitivity of various formations will be studied. 3 hours lecture; 3 semester hours.

PEGN594. ADVANCED DIRECTIONAL DRILLING. 3.0 Semester Hrs.
Application of directional control and planning to drilling. Major topics covered include: Review of procedures for the drilling of directional wells. Section and horizontal view preparation. Two and three dimensional directional planning. Collision diagrams. Surveying and trajectory calculations. Surface and down hole equipment. Common rig operating procedures, and horizontal drilling techniques. Prerequisite: PEGN311 or equivalent. 3 hours lecture; 3 semester hours.

PEGN595. DRILLING OPERATIONS. 3.0 Semester Hrs.
Lectures, seminars, and technical problems with emphasis on well planning, rotary rig supervision, and field practices for execution of the plan. This course makes extensive use of the drilling rig simulator. Prerequisite: PEGN311. 3 hours lecture; 3 semester hours.

PEGN596. ADVANCED WELL CONTROL. 3.0 Semester Hrs.
Principles and procedures of pressure control are taught with the aid of a full-scale drilling simulator. Specifications and design of blowout control equipment for onshore and offshore drilling operations, gaining control of kicks, abnormal pressure detection, well planning for wells containing abnormal pressures, and kick circulation removal methods are taught. Students receive hands-on training with the simulator and its peripheral equipment. Prerequisite: PEGN311. 3 hours lecture; 3 semester hours.

PEGN597. TUBULAR DESIGN. 3.0 Semester Hrs.

PEGN598. SPECIAL TOPICS IN PETROLEUM ENGINEERING. 6.0 Semester Hrs.
(i, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

PEGN598A. SPECIAL TOPICS LAB. 6.0 Semester Hrs.
PEGN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(i, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.
PEGN601. APPLIED MATHEMATICS OF FLUID FLOW IN POROUS MEDIA. 3.0 Semester Hrs.

This course is intended to expose petroleum-engineering students to the special mathematical techniques used to solve transient flow problems in porous media. Bessel’s equation and functions, Laplace and Fourier transformations, the method of sources and sinks, Green’s functions, and boundary integral techniques are covered. Numerical evaluation of various reservoir engineering solutions, numerical Laplace transformation and inverse transform are also discussed. 3 hours lecture; 3 semester hours.

PEGN603. DRILLING MODELS. 3.0 Semester Hrs.

Analytical models of physical phenomena encountered in drilling. Casing and drilling failure from bending, fatigue, doglegs, temperature, stretch; mud filtration; corrosion; wellhead loads; and buoyancy of tubular goods. Bit weight and rotary speed optimization. Prerequisites: PEGN311 and PEGN611. 3 hours lecture; 3 semester hours.

PEGN604. INTEGRATED FLOW MODELING. 3.0 Semester Hrs.

Students will study the formulation, development and application of a reservoir flow simulator that includes traditional fluid flow equations and a petrophysical model. The course will discuss properties of porous media within the context of reservoir modeling, and present the mathematics needed to understand and apply the simulator. Simulator applications will be interspersed throughout the course. 3 hours lecture; 3 semester hours.

PEGN605. WELL TESTING AND EVALUATION. 3.0 Semester Hrs.

Various well testing procedures and interpretation techniques for individual wells or groups of wells. Application of these techniques to field development, analysis of well problems, secondary recovery, and reservoir studies. Productivity, gas well testing, pressure build up and drawdown, well interference, fractured wells, type curve matching, and short term testing. Prerequisite: PEGN426. 3 hours lecture; 3 semester hours.

PEGN606. ADVANCED RESERVOIR ENGINEERING. 3.0 Semester Hrs.

A review of depletion type, gas-cap, and volatile oil reservoirs. Lectures and supervised studies on gravity segregation, moving gas-oil front, individual well performance analysis, history matching, performance prediction, and development planning. Prerequisite: PEGN423. 3 hours lecture; 3 semester hours.

PEGN607. PARTIAL WATER DRIVE RESERVOIRS. 3.0 Semester Hrs.

The hydrodynamic factors which influence underground water movement, particularly with respect to petroleum reservoirs. Evaluation of oil and gas reservoirs in major water containing formations. Prerequisite: PEGN424. 3 hours lecture; 3 semester hours.

PEGN608. MULTIPHASE FLUID FLOW IN POROUS MEDIA. 3.0 Semester Hrs.

The factors involved in multiphase fluid flow in porous and fractured media. Physical processes and mathematical models for micro- and macroscopic movement of multiphase fluids in reservoirs. Performance evaluation of various displacement processes in the laboratory as well as in the petroleum field during the secondary and EOR/IOR operations. Prerequisite: PEGN 424, 3 hours lecture; 3 semester hours.

PEGN614. RESERVOIR SIMULATION II. 3.0 Semester Hrs.

The course reviews the rudiments of reservoir simulation and flow equations, solution methods, and data requirement. The course emphasizes multi-phase flow and solution techniques; teaches the difference between conventional reservoir simulation, compositional modeling and multi-porosity modeling; teaches how to construct three-phase relative permeability from water-oil and gas-oil relative permeability data set; the importance of capillary pressure measurements and wetability issues; discusses the significance of gas diffusion and interphase mass transfer. Finally, the course develops solution techniques to include time tested implicit-pressure-explicit-saturation, sequential and fully implicit methods. Prerequisite: PEGN513 or equivalent, strong reservoir engineering background, and basic computer programming knowledge. 3 credit hours. 3 hours of lecture per week.

PEGN619. GEOMECHANICALLY AND PHYSICOCHEMICALLY COUPLED FLUID FLOW IN POROUS MEDIA. 3.0 Semester Hrs.

The role of physico-chemistry and geomechanics on fluid flow in porous media will be included in addition to conventional fluid flow modeling and measurements in porous media. The conventional as well as unconventional reservoirs will be studied with the coupling of physicochemical effects and geomechanics stresses. Assignments will be given to expose the students to the real field data in interpretation and evaluation of filed cases to determine practical solutions to drilling and production related modeling challenges. 3 hours lecture; 3 semester hours.

PEGN620. NATURALLY FRACTURED RESERVOIRS -- ENGINEERING AND RESERVOIR SIMULATION. 3.0 Semester Hrs.

The course covers reservoir engineering, well testing, and simulation aspects of naturally fractured reservoirs. Specifics include: fracture description, connectivity and network; fracture properties; physical principles underlying reservoir engineering and modeling naturally fractured reservoirs; local and global effects of viscous, capillary, gravity and molecular diffusion flow; dual-porosity/dual-permeability models; multi-scale fracture model; dual-mesh model; streamline model; transient testing with non-Darcy flow effects; tracer injection and breakthrough analysis; geomechanics and fractures; compositional model; coal-bed gas model; oil and gas from fractured shale; improved and enhanced oil recovery in naturally fracture reservoirs. Prerequisite: PEGN513 or equivalent, strong reservoir engineering background, and basic computer programming knowledge. 3 hours lecture; 3 semester hours.

PEGN624. COMPOSITIONAL MODELING - APPLICATION TO ENHANCED OIL RECOVERY. 3.0 Semester Hrs.

Efficient production of rich and volatile oils as well as enhanced oil recovery by gas injection (lean and rich natural gas, CO2, N2, air, and steam) is of great interest in the light of greater demand for hydrocarbons and the need for CO2 sequestration. This course is intended to provide technical support for engineers dealing with such issues. The course begins with a review of the primary and secondary recovery methods, and will analyze the latest worldwide enhanced oil recovery production statistics. This will be followed by presenting a simple and practical solvent flooding model to introduce the student to data preparation and code writing. Next, fundamentals of phase behavior, ternary phase diagram, and the Peng-Robinson equation of state will be presented. Finally, a detailed set of flow and thermodynamic equations for a full-fledged compositional model, using molar balance, equation of motion and the afore-mentioned equation of state, will be developed and solution strategy will be presented. Prerequisite: PEGN513 or equivalent, strong reservoir engineering background, and basic computer programming knowledge. 3 hours lecture; 3 semester hours.
PEGN660. CARBONATE RESERVOIRS - EXPLORATION TO PRODUCTION. 3.0 Semester Hrs.
Equivalent with GEOL660.
(II) This course will include keynote lectures and seminars on the reservoir characterization of carbonate rocks, including geologic description, petrophysics and production engineering. Course will focus on the integration of geology, rock physics, and engineering to improve reservoir performance. Application of reservoir concepts in hands-on exercises, that include a reflection seismic, well log, and core data. 3 hours lecture; 3 semester hours.

PEGN681. PETROLEUM ENGINEERING SEMINAR. 3.0 Semester Hrs.
Comprehensive reviews of current petroleum engineering literature, ethics, and selected topics as related to research and professionalism. 3 hours seminar; 3 semester hour.

PEGN698. SPECIAL TOPICS IN PETROLEUM ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

PEGN699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

PEGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.