Mechanical Engineering

2016-2017

Degrees Offered

- Master of Science (Mechanical Engineering)
- Doctor of Philosophy (Mechanical Engineering)

Program Overview

The Mechanical Engineering Department offers the Master of Science and Doctor of Philosophy degrees in Mechanical Engineering. The program demands academic rigor and depth yet also addresses real-world engineering problems. The department has four broad divisions of research activity that stem from core fields in Mechanical Engineering: (1) Biomechanics, (2) Thermal-Fluid Systems, (3) Solid Mechanics and Materials, and (4) Robotics, Automation, and Design. In many cases, individual research projects encompass more than one research area and elements from other disciplines.

Biomechanics focuses on the application of engineering principles to the musculoskeletal system and other connective tissues. Research activities include experimental, computational, and theoretical approaches with applications in the areas of rehabilitation engineering, computer-assisted surgery and medical robotics, patient-specific biomechanical modeling, intelligent prosthetics and implants, and bioinstrumentation. The Biomechanics group has strong research ties with other campus departments, the local medical community, and industry partners.

Robotics, Automation, and Design merges research from multiple areas of science and engineering. Topics include the design of robotic and automation system hardware and software, particularly for tasks that require some level of autonomy, intelligence, self-prognostics and decision making. Such capabilities are built upon integrated mechatronic systems that enable pro-active system responses to its environment and current state. These capabilities are applied in applications such as advanced robotics and manufacturing systems. Research in this division explores the science underlying the design process, implementation of mechanical and control systems to enable autonomy, and innovative computational analysis for automation, intelligence, and systems optimization.

Solid Mechanics and Materials develops novel computational and experimental solutions for problems in the mechanical behavior of advanced materials. Research in the division spans length scales from nanometer to kilometer, and includes investigations of microstructural effects on mechanical behavior, nanomechanics, granular mechanics, and continuum mechanics. Material-behavior models span length scales from the nano- and micro-scale, to the meso- and macro-scale. Much of the research is computational in nature using advanced computational methods such as molecular dynamics, finite-element, boundary-element and discrete-element methods. Strong ties exist between this group and the campus communities of applied mathematics, chemical engineering, materials science, metallurgy, and physics.

Thermal-Fluid Systems incorporates a wide array of multidisciplinary applications such as advanced energy conversion and storage, multi-phase fluid flows, materials processing, combustion, alternative fuels, and renewable energy. Research in thermal-fluid systems integrates the disciplines of thermodynamics, heat transfer, fluid mechanics, transport phenomena, chemical engineering, and materials science towards solving problems and making advances through experiments and computational modeling in the broad areas of energy conversion, fluid mechanics, and thermal transport. Research projects in this area specialize in some aspect of mechanical engineering but often have a strong interdisciplinary component in related fields such as Materials Science and Chemical Engineering.

Program Details

The Mechanical Engineering Department offers the degrees Master of Science and Doctor of Philosophy in Mechanical Engineering. The master's program is designed to prepare candidates for careers in industry or government or for further study at the Ph.D. level; both thesis and non-thesis options are available. The Ph.D. degree program is sufficiently flexible to prepare candidates for careers in industry, government, or academia. See the information that follows for full details on these degrees.

Combined Program:

The ME Department also offers combined BS/MS degree programs. These programs enable students to begin graduate coursework while still finishing their undergraduate degree requirements. This program is described in the undergraduate catalog. In addition, the combined degree program is offered in collaboration with the Physics Department and allows students to obtain specific engineering skills that complement their physics background. Details on the combined programs can be found in the CSM Undergraduate Bulletin, and course schedules for the programs can be obtained in the Mechanical Engineering, and Physics Departments.

Prerequisites

Requirements for Admissions: The minimum requirements for admission into the M.S. and Ph.D. degrees in Mechanical Engineering are:

- a baccalaureate degree in engineering, computer science, a physical science, or mathematics with a minimum grade-point average of 3.0;
- Graduate Record Examination (Quantitative Reasoning) section score of 160 or higher. Applicants from an engineering program at CSM are not required to submit GRE scores;
- TOEFL score of 79 or higher (or 550 paper-based or 213 computer-based) for applicants whose native language is not English.

Program Requirements

Admitted Students: The Mechanical Engineering graduate admissions committee may require that an admitted student complete undergraduate remedial coursework to overcome technical deficiencies. Such coursework may not count toward the graduate degree. The committee will decide whether to recommend regular or provisional admission, and may ask the applicant to come to campus for an interview.

Transfer Courses: Graduate-level courses taken at other universities for which a grade equivalent to a “B” or better was received will be considered for transfer credit into the Mechanical Engineering Department. Approval from the Advisor and/or Thesis Committee and ME Department Head will be required as appropriate. Transfer credits must not have been used as credit toward a Bachelor degree. For the M.S. degree, no more than nine credits may transfer. For the Ph.D. degree, up to 24 credit hours may be transferred. In lieu of transfer credit for individual courses, students who enter the Ph.D. program with a thesis-based master's degree from another institution may transfer up to 36
hours in recognition of the course work and research completed for that degree.

400-level Courses: As stipulated by the CSM Graduate School, students may apply toward graduate degree requirements a maximum of nine (9.0) semester hours of department-approved 400-level course work.

Advisor and Thesis Committee: Students must have an Advisor from the Mechanical Engineering Department Faculty to direct and monitor their academic plan, research, and independent studies. The M.S. graduate Thesis Committee must have at least three members, two of whom must be permanent faculty in the Mechanical Engineering Department. The Ph.D. graduate Thesis Committee must have at least four members; at least two members must be permanent faculty in the Mechanical Engineering Department, and at least one member must be from outside the department. This outside member must chair the committee. Students who choose to have a minor program must select a representative from the minor areas of study to serve on the Thesis Committee.

Ph.D. Qualifying Exam:

Students enrolled in the Mechanical Engineering Ph.D. program will be required to pass a Qualifying Exam. The Ph.D. qualifying exam will be administered at a specific date during every semester by each research division independently. Each research division will appoint a Qualifying Exam chair, who oversees the process and ensures that the exam is administered fairly. Students must take the exam by no later than the end of their third semester in the Mechanical Engineering Ph.D. program. If the student fails the exam on their first attempt, they must retake the exam in the following semester with a maximum of two attempts to pass. One-semester extensions may be granted upon request to students who are enrolled as part-time or with non-ME backgrounds.

The purpose of the Qualifying Exam is to assess some of the attributes expected of a successful Ph.D. student, including:

• to determine the student’s ability to review, synthesize and apply fundamental concepts;
• to determine the creative and technical potential of the student to solve open-ended and challenging problems;
• to determine the student’s technical communication skills.

A written exam not to exceed 4.5 hours will be administered which will be divided into no more than five topical areas related to the research division, with topics announced in advance of the exam. The students will choose three topical areas to answer. Research divisions are encouraged to choose topical areas that relate to foundational undergraduate material linked to material in the core graduate courses required by that research division. Upon completion of the written exam, students will choose one paper out of a list of papers established by the research division faculty. Students will be given two weeks to write a two-page critical review of the paper which discusses possible extensions of the research.

Students, with a satisfactory performance on the written exam, will participate in an oral exam not to exceed two hours. The oral exam will be conducted by the qualifying exam committee and the student’s advisor. The research division will specify the format of the exam in advance of the exam.

Exam results of Pass, Conditional Pass or Fail will be provided to the student in a timely manner by the exam committee. A Conditional Pass will require the student to take a remedial plan.

Degree Audit and Admission to Candidacy: Master students must complete the Degree Audit form (http://gradschool.mines.edu/Degree-Audit) by the posted deadlines. Ph.D. students must complete the Degree Audit form (http://gradschool.mines.edu/Degree-Audit) by the posted deadlines and the Admission to Candidacy form (http://gradschool.mines.edu/Admission-to-Candidacy-form) two weeks prior to census day of the semester in which they want to be considered eligible for reduced registration.

Additionally, full-time Ph.D. students must complete the following requirements within the first two calendar years after enrolling into the Ph.D. program:

• have a Thesis Committee appointment form on file in the Graduate Office;
• complete all prerequisite and core curriculum course requirements;
• demonstrate adequate preparation for, and satisfactory ability to conduct doctoral research; and
• be admitted into full candidacy for the degree.

Time Limit: As stipulated by the CSM Graduate School, a candidate for a Masters degree must complete all requirements for the degree within five years of the date of admission into the degree program. A candidate for a doctoral degree must complete all requirements for the degree within nine years of the date of admission into the degree program.

Degree Requirements

The Master of Science degree in Mechanical Engineering (thesis or non-thesis option) requires 30 credit hours. Requirements for the M.S. are 24 credit hours of coursework and 6 credit hours of thesis research. The M.S. non-thesis option requires 30 credit hours of coursework.

The Ph.D. in Mechanical Engineering degree requires 72 credit hours of course work and research credits. A minimum of 36 credit hours of course work and 30 credit hours of research credits must be completed. A minimum of 12 of the 36 credit hours of required coursework must be taken at Colorado School of Mines.

All students must complete nine credit hours of course work within one research area by selecting 3 courses listed under the Research Division Courses.

M.S. Thesis Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN502</td>
<td>ADVANCED ENGINEERING ANALYSIS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN503</td>
<td>GRADUATE SEMINAR (Enrollment required every fall and spring semester)</td>
<td>0.0</td>
</tr>
<tr>
<td>RESEARCH</td>
<td>Courses from one Research Division List</td>
<td>9.0</td>
</tr>
<tr>
<td>CORE</td>
<td>Technical Electives (Courses approved by Thesis Committee)</td>
<td>9.0</td>
</tr>
<tr>
<td>ME TECH</td>
<td>Courses from ME Course List</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN707</td>
<td>GRADUATE THESIS / DISSERTATION</td>
<td>6.0</td>
</tr>
<tr>
<td>CORE</td>
<td>RESEARCH CREDIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Semester Hrs</td>
<td>30.0</td>
</tr>
</tbody>
</table>

M.S. Non-Thesis Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN502</td>
<td>ADVANCED ENGINEERING ANALYSIS</td>
<td>3.0</td>
</tr>
<tr>
<td>RESEARCH</td>
<td>Course from one Research Division List</td>
<td>9.0</td>
</tr>
<tr>
<td>CORE</td>
<td>Technical Electives (Courses must be approved by Advisor)</td>
<td>9.0</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Hours</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>MEGN502</td>
<td>ADVANCED ENGINEERING ANALYSIS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN503</td>
<td>GRADUATE SEMINAR</td>
<td>0.0</td>
</tr>
<tr>
<td>MEGN507</td>
<td>GRADUATE THESIS / DISSERTATION RESEARCH CREDIT</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Ph.D. Degree

- **ME TECH** Technical Electives Must be approved by the Thesis Committee: 24.0
- **MECN502** PROSTHETIC AND IMPLANT ENGINEERING: 3.0
- **MECN503** EXPERIMENTAL METHODS IN BIOMECHANICS: 3.0
- **MECN504** MODELING AND SIMULATION OF HUMAN MOVEMENT: 3.0
- **MECN505** COMPUTATIONAL BIOMECHANICS: 3.0
- **MECN512** ADVANCED ENGINEERING VIBRATION: 3.0
- **MECN514** CONTINUUM MECHANICS: 3.0
- **MECN528** MICROMECHANICS/HOMOGENIZATION: 3.0
- **MECN529** NONLINEAR MECHANICS: 3.0
- **MECN529** COMPUTATIONAL MECHANICS: 3.0
- **MECN531** ADVANCED ENGINEERING MEASUREMENTS: 3.0
- **MECN532** VISCOUS FLOW AND BOUNDARY LAYERS: 3.0
- **MECN533** INTRODUCTION TO COMPUTATIONAL TECHNIQUES FOR FLUID DYNAMICS AND TRANSPORT PHENOMENA: 3.0
- **MECN534** COMBUSTION: 3.0
- **MECN535** ADVANCED ROBOT CONTROL: 3.0
- **MECN536** ENGINEERING DESIGN OPTIMIZATION: 3.0
- **MECN537** RISK AND RELIABILITY ENGINEERING: 3.0

George R. Brown Distinguished Professor
Robert J. Kee

Professors
John R. Berger
Cristian V. Ciobanu
Graham G.W. Mustoe
Alexandra Newman
Brian Thomas

Associate Professor
Joel M. Bach
Robert Braun
Mark Deinert
Anthony J. Petrella
John P.H. Steele
Neal Sullivan
Ruichong “Ray” Zhang

Assistant Professor
Gregory Bogin
Ozkan Celik
Steven DeCaluwe
Jason Porter
Anne Silverman
Aaron Stebner
Paulo Tabares-Velasco
Nils Tilton
Douglas Van Bossuyt
Xiaoli Zhang

Teaching Associate Professors
Robert Amaro
Jennifer Blacklock
Jered Dean
Ventzi Karaivanov
Leslie M. Light
Derrick Rodriguez

Emeriti Professor
Robert King
MEGN503. GRADUATE SEMINAR. 0.0 Semester Hrs.
Equivalent with EGGN504M,
(I, II) This is a seminar forum for graduate students to present their research projects, critique others' presentations, understand the breadth of engineering projects both within their specialty area and across the Division, hear from leaders of industry about contemporary engineering as well as socio-economical and marketing issues facing today's competitive global environment. In order to improve communication skills, each student is required to present a seminar in this course before his/her graduation from the Mechanical Engineering graduate program. Prerequisite: Graduate standing. 1 hour per week; 0 semester hours. Course is repeatable, but no coursework credit is awarded.

MEGN510. SOLID MECHANICS OF MATERIALS. 3.0 Semester Hrs.
Equivalent with EGGN543,
(ii) Introduction to the algebra of vectors and tensors; coordinate transformations; general theories of stress and strain; principal stresses and strains; octahedral stresses; Hooke's Law introduction to the mathematical theory of elasticity and to energy methods; failure theories for yield and fracture. Prerequisite: CEEN311 or equivalent, MATH225 or equivalent. 3 hours lecture; 3 semester hours.

MEGN511. FATIGUE AND FRACTURE. 3.0 Semester Hrs.
Equivalent with EGGN532,MTGN545,
(i) Basic fracture mechanics as applied to engineering materials, S-N curves, the Goodman diagram, stress concentrations, residual stress effects, effect of material properties on mechanisms of crack propagation. Prerequisite: none. 3 hours lecture; 3 semester hours. Fall semesters, odd numbered years.

MEGN512. ADVANCED ENGINEERING VIBRATION. 3.0 Semester Hrs.
Equivalent with EGGN546,
Vibration theory as applied to single- and multi-degree-of freedom systems. Free and forced vibrations to different types of loading-harmonic, impulse, periodic and general. Natural frequencies. Role of Damping. Importance of resonance. Modal superposition method. Prerequisite: MEGN315, 3 hours lecture; 3 semester hours.

MEGN513. KINETIC PHENOMENA IN MATERIALS. 3.0 Semester Hrs.
Equivalent with EGGN555,MLGN511,
(i) Linear irreversible thermodynamics, dorce-flux couplings, diffusion, crystalline materials, amorphous materials, defect kinetics in crystalline materials, interface kinetics, morphological evolution of interfaces, nucleation theory, crystal growth, coarsening phenomena and grain growth, solidification, spinodal decomposition. Prerequisites: MATH225: Differential equations (or equivalent), MLGN504/MTGN555/CBEN509: Thermodynamics (or its equivalent).

MEGN514. CONTINUUM MECHANICS. 3.0 Semester Hrs.
(i) This is a graduate course covering fundamentals of continuum mechanics and constitutive modeling. The goal of the course is to provide graduate students interested in fluid and solid mechanics with the foundation necessary to review and write papers in the field. Students will also gain experience interpreting, formulating, deriving, and implementing three-dimensional constitutive laws. The course explores six subjects: 1. Mathematical Preliminaries of Continuum Mechanics (Vectors, Tensors, Indicial Notation, Tensor Properties and Operations, Coordinate Transformations) 2. Stress (Traction, Invariants, Principal Values) 3. Motion and Deformation (Deformation Rates, Geometric Measures, Strain Tensors, Linearized Displacement Gradients) 4. Balance Laws (Conservation of Mass, Momentum, Energy) 5. Ideal Constitutive Relations (Frictionless & Linearly Viscous Fluids, Elasticity) 6. Constitutive Modeling (Formulation, Derivation, Implementation, Programming). 3 hours lecture, 3 semester hours.
MEGN517. INELASTIC CONSTITUTIVE RELATIONS. 3.0 Semester Hrs.
(II) This is a graduate course on inelastic constitutive relations of solid materials. The goal of the course is to provide students working in solid mechanics and metallurgy with a foundation in theory and models of inelastic material behaviors. The behaviors we cover include plasticity, thermoelasticity, nonlinear elasticity, and phase transformations. We dive into several length scales - crystal mechanics and phenomenological thermodynamic internal variable theory. We also discuss ties between models and state of the art experimental mechanics, including in-situ diffraction. We will cover both theory and numerical implementation strategies for the topics. Thus, students will gain experience interpreting, formulating, deriving, and implementing three-dimensional constitutive laws and crystal mechanics models. We will introduce many topics rather than focusing on a few such that students have a foot-in to dive deeper on their own, as they will do in the project. Prerequisites: MEGN514. 3 hours lecture, 3 semester hours.

MEGN520. BOUNDARY ELEMENT METHODS. 3.0 Semester Hrs.
Equivalent with EGGN545, (I) Development of the fundamental theory of the boundary element method with applications in elasticity, heat transfer, diffusion, and wave propagation. Derivation of indirect and direct boundary integral equations. Introduction to other Green?s function based methods of analysis. Computational experiments in primarily two dimensions. Prerequisite: MEGN502. 3 hours lecture; 3 semester hours Spring semester, odd numbered years.

MEGN521. INTRODUCTION TO DISCRETE ELEMENT METHODS (DEMS). 3.0 Semester Hrs.
Equivalent with EGGN535, (I) Review of particle/rigid body dynamics, numerical DEM solution of equations of motion for a system of particles/rigid bodies, linear and nonlinear contact and impact laws dynamics, applications of DEM in mechanical engineering, materials processing and geo-mechanics. Prerequisites: CEEN311, MEGN315 and some scientific programming experience in C/C++ or Fortran. 3 hours lecture; 3 semester hours Spring semester of even numbered years.

MEGN530. BIOMEDICAL INSTRUMENTATION. 3.0 Semester Hrs.
Equivalent with BELS530, EGGN530, the acquisition, processing, and interpretation of biological signals presents many unique challenges to the Biomedical Engineer. This course is intended to provide students with the knowledge to understand, appreciate, and address these challenges. At the end of the semester, students should have a working knowledge of the special considerations necessary to gathering and analyzing biological signal data. Prerequisites: EGGN250 MEL I, EENG281 Introduction to Electrical Circuits, Electronics, and Power, MEGN330 Introduction to Biomedical Engineering. 3 hours lecture; 3 semester hours. Fall odd years.

MEGN531. PROSTHETIC AND IMPLANT ENGINEERING. 3.0 Semester Hrs.
Equivalent with BELS527, EGGN527, Prosthetics and implants for the musculoskeletal and other systems of the human body are becoming increasingly sophisticated. From simple joint replacements to myoelectric limb replacements and functional electrical stimulation, the engineering opportunities continue to expand. This course builds on musculoskeletal biomechanics and other BELS courses to provide engineering students with an introduction to prosthetics and implants for the musculoskeletal system. At the end of the semester, students should have a working knowledge of the challenges and special considerations necessary to apply engineering principles to augmentation or replacement in the musculoskeletal system. Prerequisites: Musculoskeletal Biomechanics [MEGN430], 3 hours lecture; 3 semester hours. Fall even years.

MEGN532. EXPERIMENTAL METHODS IN BIOMECHANICS. 3.0 Semester Hrs.
(I) Introduction to experimental methods in biomechanical research. Topics include experimental design, hypothesis testing, motion capture, kinematic models, ground reaction force data collection, electromyography, inverse dynamics calculations, and applications. Strong emphasis on hands-on data collection and technical presentation of results. The course will culminate in individual projects combining multiple experimental measurement techniques. Prerequisite: Graduate Student Standing. 3 hours lecture; 3.0 semester hours.

MEGN535. MODELING AND SIMULATION OF HUMAN MOVEMENT. 3.0 Semester Hrs.
Equivalent with BELS526, EGGN526, (I) Introduction to modeling and simulation in biomechanics. The course includes a synthesis of musculoskeletal properties and interactions with the environment to construct detailed computer models and simulations. The course will culminate in individual class projects related to each student?s individual interests. Prerequisites: MEGN315 and MEGN330. 3 hours lecture; 3 semester hours.

MEGN536. COMPUTATIONAL BIOMECHANICS. 3.0 Semester Hrs.
Equivalent with BELS528, EGGN528, Computational Biomechanics provides and introduction to the application of computer simulation to solve some fundamental problems in biomechanics and bioengineering. Musculoskeletal mechanics, medical image reconstruction, hard and soft tissue modeling, joint mechanics, and inter-subject variability will be considered. An emphasis will be placed on understanding the limitations of the computer model as a predictive tool and the need for rigorous verification and validation of computational techniques. Clinical application of biomechanical modeling tools is highlighted and impact on patient quality of life is demonstrated. Prerequisite: MEGN424, MEGN330. 3 hours lecture; 3 semester hours. Fall odd years.
MEGN537. PROBABILISTIC BIOMECHANICS. 3.0 Semester Hrs.
Equivalent with EGGN529.
(ii) MEGN537. PROBABILISTIC BIOMECHANICS The course introduces the application of probabilistic analysis methods in biomechanical systems. All real engineering systems, and especially human systems, contain inherent uncertainty due to normal variations in dimensional parameters, material properties, motion profiles, and loading conditions. The purpose of this course is to examine methods for including these sources of variation in biomechanical computations. Concepts of basic probability will be reviewed and applied in the context of engineering reliability analysis. Probabilistic analysis methods will be introduced and examples specifically pertaining to musculoskeletal biomechanics will be studied. Prerequisites: MEGN436/BELS428 or MEGN536/BELS528. 3 hours lecture, 3 semester hours. Spring even years.

MEGN540. MECHATRONICS. 3.0 Semester Hrs.
Equivalent with EGGN521.
(ii) A course focusing on implementation aspects of mechatronic and control systems. Significant lab component involving embedded C programming on a mechatronics teaching platform, called a “haptic paddle”, a single degree-of-freedom force-feedback joystick. Prerequisite: Graduate standing. 3 hours lecture; 3 semester hours.

MEGN544. ROBOT MECHANICS: KINEMATICS, DYNAMICS, AND CONTROL. 3.0 Semester Hrs.
Equivalent with EGGN518.
(i) Mathematical representation of robot structures. Mechanical analysis including kinematics, dynamics, and design of robot manipulators. Representations for trajectories and path planning for robots. Fundamentals of robot control including, linear, nonlinear and force control methods. Introduction to off-line programming techniques and simulation. Prerequisite: EENG307 and MEGN441. 3 hours lecture; 3 semester hours.

MEGN545. ADVANCED ROBOT CONTROL. 3.0 Semester Hrs.
Equivalent with EGGN514.
The focus is on mobile robotic vehicles. Topics covered are: navigation, mining applications, sensors, including vision, problems of sensing variations in rock properties, problems of representing human knowledge in control systems, machine condition diagnostics, kinematics, and path planning real time obstacle avoidance. Prerequisite: EENG307. 3 hours lecture; 3 semester hours. Spring semester of odd years.

MEGN552. VISCIOUS FLOW AND BOUNDARY LAYERS. 3.0 Semester Hrs.
Equivalent with EGGN552.
(i) This course establishes the theoretical underpinnings of fluid mechanics, including fluid kinematics, stress-strain relationships, and derivation of the fluid-mechanical conservation equations. These include the mass-continuity and Navier-Stokes equations as well as the multi-component energy and species-conservation equations. Fluid-mechanical boundary-layer theory is developed and applied to situations arising in chemically reacting flow applications including combustion, chemical processing, and thin-film materials processing. Prerequisite: MEGN451, or CBEN430. 3 hours lecture; 3 semester hours.

MEGN553. INTRODUCTION TO COMPUTATIONAL TECHNIQUES FOR FLUID DYNAMICS AND TRANSPORT PHENOMENA. 3.0 Semester Hrs.
Equivalent with EGGN573.
(ii) Introduction to Computational Fluid Dynamics (CFD) for graduate students with no prior knowledge of this topic. Basic techniques for the numerical analysis of fluid flows. Acquisition of hands-on experience in the development of numerical algorithms and codes for the numerical modeling and simulation of flows and transport phenomena of practical and fundamental interest. Capabilities and limitations of CFD. Prerequisite: MEGN451. 3 hours lecture; 3 semester hours.

MEGN560. DESIGN AND SIMULATION OF THERMAL SYSTEMS. 3.0 Semester Hrs.
Equivalent with EGGN570.
In this course the principles of design, modeling, analysis, and optimization of processes, devices, and systems are introduced and applied to conventional and advanced energy conversion systems. It is intended to integrate conservation principles of thermodynamics (MEGN581) with the mechanism relations of fluid mechanics (MEGN351) and heat transfer (MEGN471). The course begins with general system design approaches and requirements and proceeds with mathematical modeling, simulation, analysis, and optimization methods. The design and simulation of energy systems is inherently computational and involves modeling of thermal equipment, system simulation using performance characteristics, thermodynamic properties, mechanistic relations, and optimization (typically with economic-based objective functions). Fundamental principles for steady-state and dynamic modeling are covered. Methods for system simulation which involves predicting performance with a given design (fixed geometry) are studied. Analysis methods that include Pinch Technology, Exergy Analysis, and Thermo-economics are examined and are considered complementary to achieving optimal designs. Optimization encompasses objective function formulation, systems analytical methods, and programming techniques. System optimization of the design and operating parameters of a configuration using various objective functions are explored through case studies and problem sets. Economics and optimization for analyses and design of advanced energy systems, such as Rankine and Brayton cycle power plants, combined heat and power, refrigeration and geothermal systems, fuel cells, turbomachinery, and heat transfer equipment are a focus. 3 lecture hours; 3 credit hours.

MEGN566. COMBUSTION. 3.0 Semester Hrs.
Equivalent with EGGN566.
(i) An introduction to combustion. Course subjects include: the development of the Chapman-Jouget solutions for deflagration and detonation, a brief review of the fundamentals of kinetics and thermochemistry, development of solutions for diffusion flames and premixed flames, discussion of flame structure, pollutant formation, and combustion in practical systems. Prerequisite: MEGN451 or CBEN430. 3 hours lecture; 3 semester hours.

MEGN569. FUEL CELL SCIENCE AND TECHNOLOGY. 3.0 Semester Hrs.
Equivalent with CBEN569,CHEN569,EGGN569,MLGN569,MTGN569.
(ii) Investigate fundamentals of fuel-cell operation and electrochemistry from a chemical-thermodynamics and materials- science perspective. Review types of fuel cells, fuel-processing requirements and approaches, and fuel-cell system integration. Examine current topics in fuel-cell science and technology. Fabricate and test operational fuel cells in the Colorado Fuel Cell Center. 3 credit hours.
MEGN571. ADVANCED HEAT TRANSFER. 3.0 Semester Hrs.
Equivalent with EGGN571.
(I) An advanced course in heat transfer that supplements topics covered in MEGN471. Derivation and solution of governing heat transfer equations from conservation laws. Development of analytical and numerical models for conduction, convection, and radiation heat transfer, including transient, multidimensional, and multimode problems. Introduction to turbulence, boiling and condensation, and radiative transfer in participating media. 3 lecture hours; 3 credit hours.

MEGN587. NONLINEAR OPTIMIZATION. 3.0 Semester Hrs.
(I) We address both unconstrained and constrained nonlinear model formulation and corresponding algorithms (e.g., Gradient Search and Newton's Method, and Lagrange Multiplier Methods and Reduced Gradient Algorithms, respectively). Applications of state-of-the-art hardware and software will emphasize solving real-world engineering problems in areas such as manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisite: MATH111. 3 hours lecture; 3 semester hours.

MEGN588. INTEGER OPTIMIZATION. 3.0 Semester Hrs.
(I) We address the formulation of integer programming models, the brand-and-bound algorithm, total unimodularity and the ease with which these models are solved, and then suggest methods to increase tractability, including cuts, strong formulations, and decomposition techniques, e.g., Lagrangian relaxation, Benders decomposition. Applications include manufacturing, energy, mining, transportation and logistics, and the military. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisite: none. 3 hours lecture; 3 semester hours. Years to be Offered: Every Other Year.

MEGN591. ADVANCED ENGINEERING DESIGN METHODS. 3.0 Semester Hrs.
Equivalent with EGGN503.
(I) Introduction to contemporary and advanced methods used in engineering design. Includes, need and problem identification, methods to understand the customer, the market and the competition. Techniques to decompose design problems to identify functions. Ideation methods to produce form from function. Design for X topics. Methods for prototyping, modeling, testing and evaluation of designs. Embodiment and detailed design processes. Prerequisites: EGGN491 and EGGN492, equivalent senior design project experience or industrial design experience, graduate standing. 3 hours lecture; 3 semester hours. Taught on demand.

MEGN592. RISK AND RELIABILITY ENGINEERING ANALYSIS AND DESIGN. 3.0 Semester Hrs.
(I) The importance of understanding, assessing, communicating, and making decisions based in part upon risk, reliability, robustness, and uncertainty is rapidly increasing in a variety of industries (e.g.: petroleum, electric power production, etc.) and has been a focus of some industries for many decades (e.g.: nuclear power, aerospace, automotive, etc). This graduate class will provide the student with a technical understanding of and ability to use common risk assessment tools such as Reliability Block Diagrams (RBD), Failure Modes and Effects Analysis (FMEA), and Probabilistic Risk Assessment (PRA); and new tools being developed in universities including Function Failure Design Methods (FFDM), Function Failure Identification and Propagation (FFIP), and Uncoupled Failure Flow State Reasoning (UFFSR) among others. Students will also be provided with a high-level overview of what risk really means and how to contextualize risk information. Methods of communicating and making decisions based in part upon risk information will be discussed. 3 hours lecture, 3 semester hours.

MEGN593. ENGINEERING DESIGN OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with EGGN593.
The application of gradient, stochastic and heuristic optimization algorithms to linear and nonlinear optimization problems in constrained and unconstrained design spaces. Students will consider problems in constrained and unconstrained design spaces. Students will consider problems with continuous, integer and mixed-integer variables, problems with single or multiple objectives and the task modeling design spaces and constraints. Design optimization methods are becoming of increasing importance in engineering design and offer the potential to reduce design cycle times while improving design quality by leveraging simulation and historical design data. Prerequisites: Experience with computer programming languages, graduate or senior standing. 3 hours lecture; 3 semester hours.

MEGN598. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MEGN599. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/ experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MEGN688. ADVANCED INTEGER OPTIMIZATION. 3.0 Semester Hrs.
(II) As an advanced course in optimization, we expand upon topics in integer programming; advanced formulation, strong integer programming formulations (e.g., symmetry elimination, variable elimination, persistence), in-depth mixed integer programming cuts, rounding heuristics, constraint programming, and decompositions. Applications of state-of-the-art hardware and software emphasize solving real-world problems in areas such as manufacturing, mining, energy, transportation and logistics, and the military. Computers are used for model formulation and solution. Prerequisite: MEGN588. 3 hours lecture; 3 semester hours. Years to be Offered: Every Other Year.
MEGN698. SPECIAL TOPICS. 6.0 Semester Hrs.
(I, II, S) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once, but no more than twice for the same course content. Prerequisite: none. Variable credit: 0 to 6 credit hours. Repeatable for credit under different titles.

MEGN699. INDEPENDENT STUDY. 0.5-6 Semester Hr.
(I, II, S) Individual research or special problem projects supervised by a faculty member, also, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: ?Independent Study? form must be completed and submitted to the Registrar. Variable credit: 0.5 to 6 credit hours. Repeatable for credit under different topics/experience and maximums vary by department. Contact the Department for credit limits toward the degree.

MEGN707. GRADUATE THESIS / DISSERTATION RESEARCH CREDIT. 1-15 Semester Hr.
Equivalent with EGGN707M.
(I, II, S) Research credit hours required for completion of a Masters-level thesis or Doctoral dissertation. Research must be carried out under the direct supervision of the student's faculty advisor. Variable class and semester hours. Repeatable for credit.