College of Engineering
& Computational Sciences

For department bulletin pages, please select from the list of links on the
left to locate more information.

CECS comprises four of the academic units and one program at CSM:

Department of Applied Mathematics and Statistics
Department of Civil and Environmental Engineering
Department of Electrical Engineering and Computer Science
Department of Mechanical Engineering
EPICS Program

Through these departments and their programs, CECS addresses the
challenges of a sustainable global society related to earth, energy and
the natural and built environments by educating the next generation of
leading engineering-citizen designers and scientists and expanding the
frontiers of knowledge through research.

If you are looking for a challenge though a world class education, if
you want the skills you need to make a difference in the world, if you
are interested in pursuing original research, or if you want to be part of
the rich traditions of an institution that has been committed to serving
the people of Colorado, the nation, and the global community since
the 1870’s, I invite you to join us in the College of Engineering and
Computational Sciences at the Colorado School of Mines.

Sincerely, Kevin L. Moore, Dean

Courses

EGGN198. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable
for credit under different titles.

EGGN205. PROGRAMMING CONCEPTS AND ENGINEERING
ANALYSIS. 3.0 Semester Hrs.
(I,I,II) This course provides an introduction to techniques of scientific
computation that are utilized for engineering analysis, with the software
package MATLAB as the primary computational platform. The course
focuses on methods data analysis and programming, along with
numerical solutions to algebraic and differential equations. Engineering
applications are used as examples throughout the course. Prerequisite:
MATH112 or MATH113 or MATH122. 3 hours lecture; 3 semester hours.

EGGN250. MULTIDISCIPLINARY ENGINEERING LABORATORY. 1.5
Semester Hr.
(I, II) (WI) Laboratory experiments integrating instrumentation, circuits
and power with computer data acquisitions and sensors. Sensor data is
used to transition between science and engineering science. Engineering
Science issues like stress, strains, thermal conductivity, pressure and
flow are investigated using fundamentals of equilibrium, continuity, and
conservation. Prerequisites: PHGN200. 0.6 hours lecture; 2.7 hours lab;
1.5 semester hour.

EGGN298. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable
for credit under different titles.

EGGN301. HUMAN-CENTERED PROBLEM DEFINITION. 3.0
Semester Hrs.
(I, II) This class will equip students with the knowledge, skills and
attitudes needed to identify, define, and begin solving real problems
for real people, within the socio-technical ambiguity that surrounds
all engineering problems. The course will focus on problems faced in
everyday life, by people from different backgrounds and in different
circumstances, so that students will be able to rise to the occasion
presented by future workplace challenges. By the end of this course,
students will be able to recognize design problems around them,
determine whether they are worth solving, and employ a suite of tools to
create multiple solutions. The follow up course --“Design for People” --
will enable students to take the best solutions to the prototype phase. 3.0
hours lecture; 3.0 semester hours.

EGGN350. MULTIDISCIPLINARY ENGINEERING LABORATORY II.
1.5 Semester Hr.
(I, II) (VI) Laboratory experiments integrating electrical circuits, fluid
mechanics, stress analysis, and other engineering fundamentals using
computer data acquisition and transducers. Fluid mechanics issues
like compressible and incompressible fluid flow (mass and volumetric),
pressure losses, pump characteristics, pipe networks, turbulent and
laminar flow, cavitation, drag, and others are covered. Experimental
stress analysis issues like compression and tensile testing, strain gage
installation, Young's Modulus, stress vs. strain diagrams, and others are
covered. Experimental stress analysis and fluid mechanics are integrated
in experiments which merge fluid power of the testing machine with
applied stress and displacement of material specimen. Co-requisites:
MEGN351 or CEEN310 and CEEN311 or MEGN312. 0.6 hours lecture;
2.7 hours lab; 1.5 semester hours.

EGGN398. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable
for credit under different titles.

EGGN401. PROJECTS FOR PEOPLE. 3.0 Semester Hrs.
(I, II) Work with innovative organizations dedicated to community
development to solve major engineering challenges. This course is
open to juniors and seniors interested in engaging a challenging design
problem and learning more about Human Centered Design (HCD).
The course will be a mixture of lecture and lab aiming at developing
engineering solutions to real problems affecting real people in areas
central to their lives. Repeatable for elective credit with a Maximum of 6
Total Hours. 1.0 hour lecture; 4.0 hours lab; 3.0 semester hours.

EGGN410. PROJECTS FOR PEOPLE II. 3.0 Semester Hours.
(I, II) (VI) Laboratory experiments integrating instrumentation, circuits
and power with computer data acquisitions and sensors. Sensor data is
used to transition between science and engineering science. Engineering
Science issues like stress, strains, thermal conductivity, pressure and
flow are investigated using fundamentals of equilibrium, continuity, and
conservation. Prerequisites: PHGN200. 0.6 hours lecture; 2.7 hours lab;
1.5 semester hour.
EGGN408. INTRODUCTION TO SPACE EXPLORATION. 1.0 Semester Hr.
(I) Overview of extraterrestrial applications of science and engineering by covering all facets of human and robotic space exploration, including its history, current status, and future opportunities in the aerospace and planetary science fields. Subtopics include: the space environment, space transportation systems, destinations (Low-Earth orbit, Moon, Mars, asteroids, other planets), current research, missions, and projects, the international and commercial perspectives, and discussion of potential career opportunities. This seminarstyle class is taught by CSM faculty, engineers and scientists from space agencies and research organizations, aerospace industry experts, and visionaries and entrepreneurs of the private space commerce sector. Prerequisites: None; 1 hour lecture; 1 semester hour.

EGGN450. MULTIDISCIPLINARY ENGINEERING LABORATORY III. 1.0 Semester Hr.
(I,II) Laboratory experiments integrating electrical circuits, fluid mechanics, stress analysis, and other engineering fundamentals using computer data acquisition and transducers. Students will design experiments to gather data for solving engineering problems. Examples are recommending design improvements to a refrigerator, diagnosing and predicting failures in refrigerators, computer control of a hydraulic fluid power circuit in a fatigue test, analysis of structural failures in an off-road vehicle and redesign, diagnosis and prediction of failures in a motor/generator system. Prerequisites: EGGN350 or EENG382, MEGN351, MEGN312 or CEEN311. Co-requisites: EENG307. 3 hours lab; 1 semester hour.

EGGN491. SENIOR DESIGN I. 3.0 Semester Hrs.
(I, II) (WI) This course is the first of a two-semester capstone course sequence giving the student experience in the engineering design process. Realistic open-ended design problems are addressed for real world clients at the conceptual, engineering analysis, and the synthesis stages and include economic and ethical considerations necessary to arrive at a final design. Students are assigned to interdisciplinary teams and exposed to processes in the areas of design methodology, project management, communications, and work place issues. Strong emphasis is placed on this being a process course versus a project course. This is a writing-across-the-curriculum course where students' written and oral communication skills are strengthened. The design projects are chosen to develop student creativity, use of design methodology and application of prior course work paralleled by individual study and research. Prerequisite: Field session appropriate to the student's specialty, for BSE Mechanical Specialty and BSME students, completion of MEGN481, for BSE Civil Specialty and BSCE students, concurrent enrollment or completion of any one of CEEN443, CEEN445, CEEN440, or CEEN415. 2 hour lecture; 3 hours lab; 3 semester hours.

EGGN492. SENIOR DESIGN II. 3.0 Semester Hrs.
(I, II) (WI) This course is the second of a two-semester sequence to give the student experience in the engineering design process. Design integrity and performance are to be demonstrated by building a prototype or model, or producing a complete drawing and specification package, and performing pre-planned experimental tests, wherever feasible, to verify design compliance with client requirements. Prerequisite: EGGN491. 1 hour lecture; 6 hours lab; 3 semester hours.

EGGN497. SUMMER PROGRAMS. 15.0 Semester Hrs.

EGGN498. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.