Mechanical Engineering

2016-2017

Program Description

The Mechanical Engineering Department offers a design-oriented undergraduate program that emphasizes fundamental engineering principles. Students receive a strong foundation in mechanical engineering disciplines, and a working knowledge of modern engineering tools. Classroom education is augmented with extensive practical laboratory experiences. Successful graduates are well-prepared for a mechanical engineering career in a world of rapid technological change.

Bachelor of Science in Mechanical Engineering

During the freshman and sophomore years, students complete a set of core courses that include mathematics, basic sciences, and fundamental engineering disciplines. These years also include engineering design coursework within Engineering Practice Introductory Course (EPIC 151) and Introduction to Mechanical Engineering (MEGN 200). This experience teaches design methodology and stresses the creative aspects of the mechanical engineering profession. Additionally in the first two years, courses in humanities and social sciences allow students to explore the linkages between the environment, human society, and engineered systems.

In the junior and senior years, students complete an advanced engineering core that includes fluid mechanics, thermodynamics, heat transfer, numerical methods, control theory, machine design, computer-aided engineering, and manufacturing processes. This engineering core is complemented by courses in economics and electives in humanities and social sciences. Students must also take three advanced technical electives and three additional free electives to explore specific fields of interest. In the senior year, all students must complete a capstone design course focused on a multidisciplinary engineering project.

Students in mechanical engineering spend considerable time in laboratories, including the CECS Garage with a variety of prototyping and testing equipment. Students are also encouraged to become involved in research that is being conducted within the Department of Mechanical Engineering. These research areas include: biomechanics; solid mechanics and materials; thermal-fluid systems; and robotics, automation, and design.

The Bachelor of Science in Mechanical Engineering degree is accredited by ABET.

Program Educational Objectives

(Bachelor of Science in Mechanical Engineering)

The Mechanical Engineering program contributes to the educational objectives described in the CSM Graduate Profile and the ABET Accreditation Criteria. Accordingly, the Mechanical Engineering Program at CSM has established the following program educational objectives for the B.S. in Mechanical Engineering degree:

Within three to five years of completing their degree, graduates will be:

- Applying their Mechanical Engineering education as active contributors in the workforce or graduate school;
- Effective at communicating technical information in a diverse and globally integrated society;
- Demonstrating their commitment to continued professional development through training, coursework, and/or professional society involvement;
- Exemplifying ethical and social responsibility in their professional activities.

Bachelor of Science in Mechanical Engineering Degree Requirements:

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Fall</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIS100</td>
<td>NATURE AND HUMAN VALUES</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>CHGN121</td>
<td>PRINCIPLES OF CHEMISTRY I</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>CSM101</td>
<td>FRESHMAN SUCCESS SEMINAR</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>CBEN110</td>
<td>FUNDAMENTALS OF BIOLOGY I or GEGN 101</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>MATH111</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS I</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Fall</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIS200</td>
<td>HUMAN SYSTEMS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>PHGN200</td>
<td>PHYSICS II- ELECTROMAGNETISM AND OPTICS</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>MATH213</td>
<td>CALCULUS FOR SCIENTISTS AND ENGINEERS III</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>CEEN241</td>
<td>STATICS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN200</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td>18.0</td>
</tr>
</tbody>
</table>
Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTGN202</td>
<td>ENGINEERED MATERIALS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN361</td>
<td>THERMODYNAMICS I</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>EENG281</td>
<td>INTRODUCTION TO ELECTRICAL CIRCUITS, ELECTRONICS AND POWER</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MATH225</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN312</td>
<td>INTRODUCTION TO SOLID MECHANICS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>PAGN</td>
<td>PHYSICAL ACTIVITY COURSE</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 15.5

Summer
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN201</td>
<td>MECHANICAL FIELD SESSION</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 3.0

Junior Fall
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBN201</td>
<td>PRINCIPLES OF ECONOMICS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>EGGN250</td>
<td>MULTIDISCIPLINARY ENGINEERING LABORATORY</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>MEGN351</td>
<td>FLUID MECHANICS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MATH307</td>
<td>INTRODUCTION TO SCIENTIFIC COMPUTING</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN315</td>
<td>DYNAMICS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN424</td>
<td>COMPUTER AIDED ENGINEERING</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 16.5

Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIS/EBGN</td>
<td>H&S Restricted Elective I</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>EGGN350</td>
<td>MULTIDISCIPLINARY ENGINEERING LABORATORY II</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>MEGN471</td>
<td>HEAT TRANSFER</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>EENG307</td>
<td>INTRODUCTION TO FEEDBACK CONTROL SYSTEMS</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MEGN481</td>
<td>MACHINE DESIGN</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>MEGN381</td>
<td>MANUFACTURING PROCESSES</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 17.5

Senior Fall
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAIS/EBGN</td>
<td>H&S Restricted Elective II</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>FREE</td>
<td>Free Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>EGGN450</td>
<td>MULTIDISCIPLINARY ENGINEERING LABORATORY III</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>EGGN491</td>
<td>SENIOR DESIGN I</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MECH</td>
<td>Mechanical Engineering Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>ELECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH</td>
<td>Mechanical Engineering Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>ELECT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 16.0

Spring
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>lec</th>
<th>lab sem.hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE</td>
<td>Free Elective</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>LAIS/EBGN</td>
<td>H&S Restricted Elective III</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>MECH</td>
<td>Mechanical Engineering Elective</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Total Semester Hrs: 3.0

* Mechanical Engineering students are required to take three Mechanical Engineering elective courses. At least one of these courses must be from the Advanced Engineering Sciences list. The remaining must be from either the Advanced Engineering Sciences list or the Mechanical Engineering Electives list.

Advanced Engineering Sciences:
- MEGN412 ADVANCED MECHANICS OF MATERIALS 3.0
- MEGN416 ENGINEERING VIBRATION 3.0
- MEGN451 FLUID MECHANICS II 3.0
- MEGN461 THERMODYNAMICS II 3.0

Mechanical Engineering Electives:
- CEEEN405 NUMERICAL METHODS FOR ENGINEERS 3.0
- CEEEN406 FINITE ELEMENT METHODS FOR ENGINEERS 3.0
- EBN201 ENGINEERING ECONOMICS 3.0
- EENG389 FUNDAMENTALS OF ELECTRIC MACHINERY 4.0
- EENG417 MODERN CONTROL DESIGN 3.0
- EGGN401 PROJECTS FOR PEOPLE 3.0
- MEGN330 INTRODUCTION TO BIOMECHANICAL ENGINEERING 3.0
- MEGN430 MUSCULOSKELETAL BIOMECHANICS 3.0
- MEGN435 MODELING AND SIMULATION OF HUMAN MOVEMENT 3.0
- MEGN436 COMPUTATIONAL BIOMECHANICS 3.0
- MEGN441 INTRODUCTION TO ROBOTICS 3.0
- MEGN466 INTRODUCTION TO INTERNAL COMBUSTION ENGINES 3.0
- MEGN485 MANUFACTURING OPTIMIZATION WITH NETWORK MODELS 3.0
- MEGN493 ENGINEERING DESIGN OPTIMIZATION 3.0
- MEGN498 SPECIAL TOPICS IN MECHANICAL ENGINEERING (SPECIAL TOPICS) 1-6
- MEGN5XX ANY 500-LEVEL MEGN COURSE 3.0
- MTGN311 STRUCTURE OF MATERIALS 3.0
- MTGN450 STATISTICAL PROCESS CONTROL AND DESIGN OF EXPERIMENTS 3.0
- MTGN445 MECHANICAL PROPERTIES OF MATERIALS 3.0
- MTGN463 POLYMER ENGINEERING 3.0
- MTGN464 FORGING AND FORMING 2.0
- MTGN475 METALLURGY OF WELDING 2.0
- NUGN520 INTRODUCTION TO NUCLEAR REACTOR THERMAL-HYDRAULICS 3.0
- PHGN300 PHYSICS III-MODERN PHYSICS I 3.0
- PHGN350 INTERMEDIATE MECHANICS 4.0
- PHGN419 PRINCIPLES OF SOLAR ENERGY SYSTEMS 3.0
Combined Mechanical Engineering Baccalaureate and Masters Degrees

Mechanical Engineering offers a five year combined program in which students have the opportunity to obtain specific engineering skills supplemented with graduate coursework in mechanical engineering. Upon completion of the program, students receive two degrees, the Bachelor of Science in Mechanical Engineering and the Master of Science in Mechanical Engineering.

Admission into a graduate degree program as a Combined Undergraduate/Graduate student may occur as early as the first semester Junior year and must be granted no later than the end of registration the last semester Senior year. Students must meet minimum GPA admission requirements for the graduate degree.

Students are required to take an additional thirty credit hours for the M.S. degree. Up to nine of the 30 credit hours beyond the undergraduate degree requirements can be 400-level courses. The remainder of the courses will be at the graduate level (500-level and above). The Mechanical Engineering Graduate Bulletin provides detail into the graduate program and includes specific instructions regarding required and elective courses. Students may switch from the combined program, which includes a non-thesis Master of Science degree to a M.S. degree with a thesis option; however, if students change degree programs they must satisfy all degree requirements for the M.S. with thesis degree.

General CSM Minor/ASI requirements can be found here (bulletin.mines.edu/undergraduate/undergraduateinformation/minorasi).

Mechanical Engineering Areas of Special Interest (ASI) and Minor Programs

General Requirements

The Mechanical Engineering Department offers minor and ASI programs. Students who elect an ASI or minor, must fulfill all prerequisite requirements for each course in a chosen sequence. Students in the sciences or mathematics must be prepared to meet prerequisite requirements in fundamental engineering and engineering science courses. Students in engineering disciplines are better positioned to meet the prerequisite requirements for courses in the minor and ASI Mechanical Engineering program. (See Minor/ASI section of the Bulletin for all requirements for a minor/ASI at CSM.)

For an Area of Special Interest in Mechanical Engineering, the student must complete a minimum of 12 hours from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN312</td>
<td>INTRODUCTION TO SOLID MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN315</td>
<td>DYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN351</td>
<td>FLUID MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN361</td>
<td>THERMODYNAMICS I</td>
<td>3.0</td>
</tr>
</tbody>
</table>

For a Minor in Mechanical Engineering, the student must complete a minimum of 18 hours from the following:

1. Required Courses (choose three, 9 credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN312</td>
<td>INTRODUCTION TO SOLID MECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN315</td>
<td>DYNAMICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN351</td>
<td>FLUID MECHANICS</td>
<td>3.0</td>
</tr>
</tbody>
</table>

2. Tracks (choose one track):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN424</td>
<td>COMPUTER AIDED ENGINEERING</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN481</td>
<td>MACHINE DESIGN</td>
<td>4.0</td>
</tr>
<tr>
<td>MEGN381</td>
<td>MANUFACTURING PROCESSES</td>
<td>3.0</td>
</tr>
<tr>
<td>or MEGN441</td>
<td>INTRODUCTION TO ROBOTICS</td>
<td></td>
</tr>
<tr>
<td>or MEGN416</td>
<td>ENGINEERING VIBRATION</td>
<td></td>
</tr>
<tr>
<td>or MEGN485</td>
<td>MANUFACTURING OPTIMIZATION WITH NETWORK MODELS</td>
<td></td>
</tr>
</tbody>
</table>

Solid Materials Track (9 credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN412</td>
<td>ADVANCED MECHANICS OF MATERIALS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN416</td>
<td>ENGINEERING VIBRATION</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN424</td>
<td>COMPUTER AIDED ENGINEERING</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Thermal-Fluids Track (9 credit hours)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN451</td>
<td>FLUID MECHANICS II</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN461</td>
<td>THERMODYNAMICS II</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN471</td>
<td>HEAT TRANSFER</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Biomechanical Engineering Minor

General Requirements

To obtain a Biomechanical Engineering Minor, students must take at least 18.0 credits from the courses listed below. Fundamentals of Biology I (CBEN110), Fundamentals of Biology II (CBEN120), and Introduction to Biomechanical Engineering (MEGN330) are required (11.0 credits). Three more courses may be chosen from the proposed list of electives. The list of electives will be modified as new related courses become available.

Required Courses (11.0 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBEN110</td>
<td>FUNDAMENTALS OF BIOLOGY I</td>
<td>4.0</td>
</tr>
<tr>
<td>CBEN120</td>
<td>FUNDAMENTALS OF BIOLOGY II</td>
<td>4.0</td>
</tr>
<tr>
<td>MEGN330</td>
<td>INTRODUCTION TO BIOMECHANICAL ENGINEERING</td>
<td></td>
</tr>
</tbody>
</table>

Biomechanical Engineering Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGN430</td>
<td>MUSCULOSKELETAL BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN435</td>
<td>MODELING AND SIMULATION OF HUMAN MOVEMENT</td>
<td>3.0</td>
</tr>
<tr>
<td>or MEGN535</td>
<td>MODELING AND SIMULATION OF HUMAN MOVEMENT</td>
<td></td>
</tr>
<tr>
<td>MEGN436</td>
<td>COMPUTATIONAL BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>or MEGN536</td>
<td>COMPUTATIONAL BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN530</td>
<td>BIOMEDICAL INSTRUMENTATION</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN531</td>
<td>PROSTHETIC AND IMPLANT ENGINEERING</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN532</td>
<td>EXPERIMENTAL METHODS IN BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN537</td>
<td>PROBABILISTIC BIOMECHANICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN553</td>
<td>INTRODUCTION TO COMPUTATIONAL TECHNIQUES FOR FLUID DYNAMICS AND TRANSPORT PHENOMENA</td>
<td>3.0</td>
</tr>
<tr>
<td>MEGN x98, x99</td>
<td>SPECIAL TOPICS</td>
<td>3.0</td>
</tr>
<tr>
<td>MTGN472</td>
<td>BIOMATERIALS I</td>
<td>3.0</td>
</tr>
<tr>
<td>or MTGN572</td>
<td>BIOMATERIALS</td>
<td></td>
</tr>
</tbody>
</table>
MTGN570 BIOCOMPATIBILITY OF MATERIALS 3.0
CBEN311 INTRODUCTION TO NEUROSCIENCE 3.0
CBEN306 ANATOMY AND PHYSIOLOGY: BONE, MUSCLE, AND BRAIN
CBEN309 ANATOMY AND PHYSIOLOGY: BONE, MUSCLE, AND BRAIN LABORATORY
CBEN320 CELL BIOLOGY AND PHYSIOLOGY 3.0
CBEN454 APPLIED BIOINFORMATICS 3.0
or CBEN554 APPLIED BIOINFORMATICS
MATH331 MATHEMATICAL BIOLOGY 3.0
PHGN433 BIOPHYSICS 3.0

* As the content of these courses varies, the course must be noted as relevant to the biomechanical engineering minor.

Professor and Department Head
Gregory S. Jackson

George R. Brown Distinguished Professor
Robert J. Kee

Professors
John R. Berger
Cristian V. Ciobanu
Graham G. W. Mustoe
Alexandra Newman
Brian Thomas

Associate professors
Joel M. Bach
Robert Braun
Mark Deinert
Anthony Petrella
John P. H. Steele
Neal Sullivan
Ruichong “Ray” Zhang

Assistant professors
Gregory Bogin
Ozkan Celik
Steven DeCaluwe
Jason Porter
Anne Silverman
Aaron Stebner
Paulo Tabares-Velasco

Nils Tilton
Douglas Van Bossuyt
Xiaoli Zhang

Teaching Associate Professors
Robert Amaro
Jennifer Blacklock
Jered Dean
Ventzi Karaivanov
Leslie M. Light
Derrick Rodriguez

Emeriti Professors
Robert King
Michael B. McGrath

Emerita Professor
Joan P. Gosink

Emeritus Associate Professor
David Munoz

Research Professor
George Gilmer

Research Associate Professor
Huayang Zhu

Research Assistant Professors
Christopher B. Dryer
Braden Kappes
Canan Karakaya
Andrew Osborne
Sandrine Ricote

Affiliate Professor of Mechanical Engineering
Michael Mooney
Courses

MEGN200. INTRODUCTION TO MECHANICAL ENGINEERING. 3.0 Semester Hrs.
(I, II, S) Students will learn the fundamentals behind mechanical engineering, design and drafting. The course will include an introduction to solid modeling using CAD and/or SolidWorks. Students will also gain understanding of how to visualize and present technical data. Understanding of the design process will be expanded from the previous course by understanding how drawing and prototyping are implemented through practice in a common team design project. Teamwork, presentations, and technical writing will be an integral part of this course. Prerequisites: EPIC151 or EPIC155. 3 hours lecture; 3 semester hours.

MEGN201. MECHANICAL FIELD SESSION. 3.0 Semester Hrs.
Equivalent with EGGN235.
(S) This course provides the student with hands-on experience in the use of modern engineering tools as part of the design process including modeling, fabrication, and testing of components and systems. Student use engineering, mathematics and computers to conceptualize, model, create, test, and evaluate components and systems of their creation. Teamwork is emphasized by having students work in teams. Prerequisites: EENG281, MEGN200, and MEGN312 or CEEN311. Three weeks in summer field session; 3 semester hours.

MEGN298. SPECIAL TOPICS. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MEGN299. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.

MEGN312. INTRODUCTION TO SOLID MECHANICS. 3.0 Semester Hrs.
(I, II, S) Introduction to the theory and application of the principles of Solid Mechanics by placing an early focus on free body diagrams, stress and strain transformations, and failure theories. Covered topics include: stress and stress transformation, strain and strain transformation, mechanical properties of materials, axial load, torsion, bending, transverse shear, combined loading, pressure vessels, failure theories, stress concentrations, thermal stress, deflection of beams and shafts, and column buckling. Upon completion of the course, students will be able to apply the principles of Solid Mechanics to the analysis of elastic structures under simple and combined loading, use free body diagrams in the analysis of structures, use failure theories to assess safety of design, and effectively communicate the outcomes of analysis and design problems. May not also receive credit for CEEN311. Prerequisites: CEEN241 (C- or better). Co-requisites: MEGN200. 3 hours lecture; 3 semester hours.

MEGN315. DYNAMICS. 3.0 Semester Hrs.
Equivalent with EGGN315.
(I,II,S) Absolute and relative motions. Kinetics, work-energy, impulse-momentum, vibrations. Prerequisites: CEEN241 (C- or better) and MATH225 (C- or better). 3 hours lecture; 3 semester hours.

MEGN330. INTRODUCTION TO BIOMECHANICAL ENGINEERING. 3.0 Semester Hrs.
Equivalent with BELS325,BELS420,EGGN325,EGGN420, (I) The application of mechanical engineering principles and techniques to the human body presents many unique challenges. The discipline of Biomedical Engineering (more specifically, Biomechanical Engineering) has evolved over the past 50 years to address these challenges. Biomechanical Engineering includes such areas as biomechanics, biomaterials, bioinstrumentation, medical imaging, and rehabilitation. This course is intended to provide an introduction to, and overview of, Biomechanical Engineering and to prepare the student for more advanced Biomechanical coursework. At the end of the semester, students should have a working knowledge of the special considerations necessary to apply various mechanical engineering principles to the human body. Prerequisites: MEGN312 or CEEN311 and PHGN200. Co-requisites: MEGN315. 3 hours lecture; 3 semester hours.

MEGN340. COOPERATIVE EDUCATION. 3.0 Semester Hrs.
Equivalent with EGGN340,EGGN340M, (I,II,S) Supervised, full-time engineering related employment for a continuous six-month period in which specific educational objectives are achieved. Students must meet with the Department Head prior to enrolling to clarify the educational objectives for their individual Co-op program. Prerequisites: Second semester sophomore status and a cumulative grade-point average of at least 2.00. 3 semester hours credit will be granted once toward degree requirements. Credit earned in MEGN340, Cooperative Education, may be used as free elective credit hours if, in the judgment of the Department Head, the required term paper adequately documents the fact that the work experience entailed high-quality application of engineering principles and practice. Applying the credits as free electives requires the student to submit a Declaration of Intent to Request Approval to Apply Co-op Credit toward Graduation Requirements form obtained from the Career Center to the Department Head.

MEGN351. FLUID MECHANICS. 3.0 Semester Hrs.
Equivalent with EGGN351, (I, II) Fluid properties, fluid statics, control-volume analysis, Bernoulli equation, differential analysis and Navier-Stokes equations, dimensional analysis, internal flow, external flow, open-channel flow, and turbomachinery. May not also receive credit for CEEN310 or PEGN251. Prerequisite: CEEN241 (C- or better) or MNGN317 (C- or better). 3 hours lecture; 3 semester hours.

MEGN361. THERMODYNAMICS I. 3.0 Semester Hrs.
Equivalent with EGGN371, (I, II) A comprehensive treatment of thermodynamics from a mechanical engineering point of view. Thermodynamic properties of substances inclusive of phase diagrams, equations of state, internal energy, enthalpy, entropy, and ideal gases. Principles of conservation of mass and energy for steady-state and transient analyses. First and Second Law of thermodynamics, heat engines, and thermodynamic efficiencies. Application of fundamental principles with an emphasis on refrigeration and power cycles. May not also receive credit for CHGN209, CBEN210, or GEGN330. Prerequisite: MATH213 (C- or better). 3 hours lecture; 3 semester hours.
MEGN381. MANUFACTURING PROCESSES. 3.0 Semester Hrs.
Equivalent with EGGN390, MEGN380,
(I, II, S) Introduction to a wide variety of manufacturing processes with
emphasis on process selection and laboratory measurements of process
conditions with product variables. Consideration of relations among
material properties, process settings, tooling features and product
attributes. Design and implementation of a process for manufacture of
a given component. Manual and Automated manufacturing and their
implementation in plant layouts. Understanding how to eliminate waste in
manufacturing processes and enhance scheduling and satisfying client
needs. Quality, tolerances and standards will be discussed along with
their importance in a manufacturing setting. Prerequisite: MEGN312 or
CEEN311, and MTGN202 and MEGN201. 3 lecture hours, 3 semester
hours.

MEGN398. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 1-6
Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special
interests of instructor(s) and student(s). Usually the course is offered only
onece. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable
for credit under different titles.

MEGN399. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special project problems supervised by a
faculty member, when a student and instructor agree on a subject matter,
content, and credit hours. Prerequisite: "Independent Study" form must
be completed and submitted to the Registrar. Variable credit; 1 to 6 credit
hours. Repeatable for credit.

MEGN412. ADVANCED MECHANICS OF MATERIALS. 3.0 Semester
Hrs.
Equivalent with EGGN422,
(I, II) General theories of stress and strain; stress and strain
transformations, principal stresses and strains, octahedral shear stresses,
Hooke's law for isotropic material, and failure criteria. Introduction to
elasticity and to energy methods. Torsion of non-circular and thin-walled
members. Unsymmetrical bending and shear-center, curved beams, and
beams on elastic foundations. Introduction to plate theory. Thick-walled
cylinders and contact stresses. Prerequisite: CEEN311 (C- or better) or
MEGN312 (C- or better). 3 hours lecture; 3 semester hours.

MEGN416. ENGINEERING VIBRATION. 3.0 Semester Hrs.
Equivalent with EGGN478,
(II) Theory of mechanical vibrations as applied to single- and multi-
degree-of-freedom systems. Analysis of free and forced vibrations to
different types of loading - harmonic, impulse, periodic and general
transient loading. Derive model systems using D’Alambert’s principle,
Lagrange’s equations and Hamilton’s principle. Analysis of natural
frequencies and mode shapes. Role of damping in machines and
structures. Analysis and effects of resonance. Use of the modal
superposition method and the transient Duhamel integral method.
Prerequisite: MEGN315 (C- or better). 3 hours lecture; 3 semester hours.

MEGN424. COMPUTER AIDED ENGINEERING. 3.0 Semester Hrs.
Equivalent with EGGN413,
(I, II, S) This course introduces the student to the concept of computer-
ased engineering. The major objective is to provide the student with the
necessary background to use the computer as a tool for engineering
alysis and design. The Finite Element Analysis (FEA) method and
associated computational engineering software have become significant
tools in engineering analysis and design. This course is directed to
learning the concepts of FEA and its application to civil and mechanical
engineering analysis and design. Note that critical evaluation of the
results of a FEA using classical methods (from statics and mechanics of
materials) and engineering judgment is employed throughout the course.
Prerequisite: MEGN312 (C- or better) or CEEN311 (C- or better). 3 hours
lecture; 3 semester hours.

MEGN425. ADVANCED COMPUTER AIDED ENGINEERING. 3.0
Semester Hrs.
(I, S) This course studies advanced topics in engineering analysis
using the finite element method. The analyses are conducted using
commercial FEA software. The advanced topics include: nonlinear large
deformations and elasto-plastic behavior, steady and transient heat
transfer and thermally induced stresses, mechanical vibrations and
transient dynamic phenomena, deformations and stresses in mechanical
and structural assemblies, and stress intensity phenomena. Note, the
accuracy and validity of FEA results is assessed by comparison with
results obtained with exact or approximate analytical methods wherever
possible. Prerequisites: MEGN424. 3 hours lecture; 3 semester hours.

MEGN430. MUSCULOSKELETAL BIOMECHANICS. 3.0 Semester Hrs.
Equivalent with BELS425, EGGN425,
(I, II) This course is intended to provide mechanical engineering students
with a second course in musculoskeletal biomechanics. At the end of the
semester, students should have in-depth knowledge and understanding
necessary to apply mechanical engineering principles such as statics,
dynamics, and mechanics of materials to the human body. The course
will focus on the biomechanics of injury since understanding injury
will require developing an understanding of normal biomechanics.
Prerequisite: MEGN315, (MEGN312 or CEEN311), MEGN330, or
structor permission. 3 hours lecture; 3 semester hours.

MEGN435. MODELING AND SIMULATION OF HUMAN MOVEMENT.
3.0 Semester Hrs.
Equivalent with BELS426, EGGN426,
(I) Introduction to modeling and simulation in biomechanics. The course
cludes a synthesis of musculoskeletal properties and interactions with
the environment to construct detailed computer models and simulations.
The course will culminate in individual class projects related to each
student’s individual interests. Prerequisites: MEGN315 and MEGN330. 3
hours lecture; 3 semester hours.

MEGN436. COMPUTATIONAL BIOMECHANICS. 3.0 Semester Hrs.
Equivalent with BELS428, BELS428, EGGN428,
Computational Biomechanics provides an introduction to the application
of computer simulation to solve some fundamental problems in
bioengineering and bioengineering. Musculoskeletal mechanics, medical
image reconstruction, hard and soft tissue modeling, joint mechanics,
and inter-subject variability will be considered. An emphasis will be
placed on understanding the limitations of the computer model as a
predictive tool and the need for rigorous verification and validation of
computational techniques. Clinical application of biomechanical modeling
tools is highlighted and impact on patient quality of life is demonstrated.
Prerequisites: MEGN424, MEGN330. 3 hours lecture, 3 semester hours.
Fall odd years.
MEGN441. INTRODUCTION TO ROBOTICS. 3.0 Semester Hrs.
Equivalent with EGGN400,
(I, II) Overview and introduction to the science and engineering of intelligent mobile robotics and robotic manipulators. Covers guidance and force sensing, perception of the environment around a mobile vehicle, reasoning about the environment to identify obstacles and guidance path features and adaptively controlling and monitoring the vehicle health. A lesser emphasis is placed on robot manipulator kinematics, dynamics, and force and tactile sensing. Surveys manipulator and intelligent mobile robotics research and development. Introduces principles and concepts of guidance, position, and force sensing; vision data processing; basic path and trajectory planning algorithms; and force and position control. Prerequisites: CSCI261 and EENG281. 2 hours lecture; 1 hour lab; 3 semester hours.

MEGN451. FLUID MECHANICS II. 3.0 Semester Hrs.
Equivalent with EGGN473,
(II) Review of elementary fluid mechanics and engineering, two-dimensional external flows, boundary layers, flow separation; Compressible flow, isentropic flow, normal and oblique shocks, Prandtl-Meyer expansion fans, Fanno and Rayleigh flow; Introduction to flow instabilities (e.g., Kelvin-Helmholtz instability, Raleigh Benard convection). Prerequisite: MEGN351 (C- or better). 3 hours lecture; 3 semester hours.

MEGN456. INTRODUCTION TO INTERNAL COMBUSTION ENGINES. 3.0 Semester Hrs.
(I) Introduction to Internal Combustion Engines (ICEs); with a specific focus on Compression Ignition (CI) and Spark Ignition (SI) reciprocating engines. This is an applied thermo science course designed to introduce students to the fundamentals of both 4-stroke and 2-stroke reciprocating engines ranging in size from model airplane engines to large cargo ship engines. Course is designed as a one semester course for students without prior experience with ICE engines, however, the course will also include advanced engine technologies designed to deliver more horsepower, utilize less fuel, and meet stringent emission regulations. Discussion of advancements in alternative fueled engines will be covered as well. This course also includes an engine laboratory designed to provide hands-on experience and provide further insight into the material covered in the lectures. Prerequisites: MEGN351, MEGN361. Co-requisites: MEGN471. 3 hours lecture; 1 hour lab; 3 semester hours.

MEGN471. HEAT TRANSFER. 3.0 Semester Hrs.
Equivalent with EGGN471,
(I,II) Engineering approach to conduction, convection, and radiation, including steadystate conduction, nonsteady-state conduction, internal heat generation conduction in one, two, and three dimensions, and combined conduction and convection. Free and forced convection including laminar and turbulent flow, internal and external flow. Radiation of black and grey surfaces, shape factors and electrical equivalence. Prerequisite: C- or better in MATH225 or MATH235, MEGN351, MEGN361 or PHGN341. 3 hours lecture; 3 semester hours.

MEGN481. MACHINE DESIGN. 4.0 Semester Hrs.
Equivalent with EGGN411,
(I, II) This course is an introduction to the principles of mechanical design. Methods for determining static, fatigue and surface failure are presented. Analysis and selection of machine components such as shafts, keys, couplings, bearings, gears, springs, power screws, and fasteners is covered. Prerequisites: C- or better in MATH315 or PHGN350, and MEGN424. 3 hours lecture, 3 hours lab; 4 semester hours.

MEGN482. MECHANICAL DESIGN USING GD&T. 3.0 Semester Hrs.
Equivalent with EGGN410,
(II) The mechanical design process can be broadly grouped into three phases: requirements and concept, design and analysis, details and drawing package. In this class students will learn concepts and techniques for the details and drawing package phase of the design process. The details of a design are critical to the success of a design project. The details include selection and implementation of a variety of mechanical components such as fasteners (threaded, keys, retaining rings), bearing and bushings. Fits and tolerances will also be covered. Statistical tolerance analysis will be used to verify that an assembly will fit together and to optimize the design. Mechanical drawings have become sophisticated communication tools that are used throughout the processes of design, manufacturing, and inspection. Mechanical drawings are interpreted either by the ANSI or ISO standard which includes Geometric Dimensioning and Tolerancing (GD&T). In this course the student will learn to create mechanical drawings that communicate all of the necessary information to manufacture the part, inspect the part, and allow the parts to be assembled successfully. Prerequisite: MEGN201. 3 hours lecture, 3 semester hours.

MEGN485. MANUFACTURING OPTIMIZATION WITH NETWORK MODELS. 3.0 Semester Hrs.
Equivalent with EBN456,
(I) We examine network flow models that arise in manufacturing, energy, mining, transportation and logistics: minimum cost flow models in transportation, shortest path problems in assigning inspection effort on a manufacturing line, and maximum flow models to allocate machine-hours to jobs. We also discuss an algorithm or two applicable to each problem class. Computer use for modeling (in a language such as AMPL) and solving (with software such as CPLEX) these optimization problems is introduced. Prerequisites: MATH111. 3 hours lecture; 3 semester hours.
MEGN493. ENGINEERING DESIGN OPTIMIZATION. 3.0 Semester Hrs.
Equivalent with EGGN493, (II) The application of gradient, stochastic and heuristic optimization algorithms to linear and nonlinear optimization problems in constrained and unconstrained design spaces. Students will consider problems with continuous, integer and mixed-integer variables, problems with single or multiple objectives and the task modeling design spaces and constraints. Design optimization methods are becoming of increasing importance in engineering design and offer the potential to reduce design cycle times while improving design quality by leveraging simulation and historical design data. Prerequisites: MATH213 and MATH225 (Required), CSCI260 or CSCI261 or other experience with computer programming languages (Suggested). 3 hours lecture; 3 semester hours.

MEGN497. SPECIAL SUMMER COURSE. 15.0 Semester Hrs.

MEGN498. SPECIAL TOPICS IN MECHANICAL ENGINEERING. 1-6 Semester Hr.
(I, II) Pilot course or special topics course. Topics chosen from special interests of instructor(s) and student(s). Usually the course is offered only once. Prerequisite: none. Variable credit; 1 to 6 credit hours. Repeatable for credit under different titles.

MEGN499. INDEPENDENT STUDY. 1-6 Semester Hr.
(I, II) Individual research or special problem projects supervised by a faculty member, when a student and instructor agree on a subject matter, content, and credit hours. Prerequisite: "Independent Study" form must be completed and submitted to the Registrar. Variable credit; 1 to 6 credit hours. Repeatable for credit.